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Abstract: The paper represents an enhanced new algorithm called FPSO-FJSSP, based 

on Particle Swarm Optimization (PSO) technique for the combinatorial flexible job 

shop scheduling problem (FJSSP). Five test examples from literature sources are tested 

by the new algorithm. In all cases the optimal solution has been found. The performance 

of the FPSO-FJSSP algorithm is illustrated on one of the test examples. The obtained 

results are encouraging. A variant of the new algorithm can be applied to solve multiple 

objective FJSSP.  
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1. INTRODUCTION 

 

The flexible job shop scheduling problem (FJSSP) belongs to the class of NP-

hard optimization problems. The exact methods need great computational time to find 

out the optimal solution. That’s why many heuristics and metaheuristics are 

developed to solve the FJSSP. One well known heuristic, which is used by many 

researchers for solving FJSSP is the Particle Swarm Optimization (PSO). This is a 

population based stochastic optimization technique, inspired by the food searching 

process by flocks of birds, shoals of fish and swarms of insects. 

PSO has many similarities with evolutionary optimization techniques such as 

genetic algorithms (GA). The search is initialized with a population of uniformly 

distributed solutions, which are updated during the generations/iterations. But, unlike 

GA, PSO has no evolutionary operators such as crossover and mutation. In PSO, the 

potential solutions, called particles fly in the feasible region of the task after the 

current optimal particle. Each particle remembers its coordinates in the feasible 

region that are associated with the best solution (fitness) that it has achieved to date. 
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(The value of fitness is also remembered.) This value is denoted by pbest. Another 

"best" value, which is used in optimization by swarm particles is the best value 

obtained so far by any particle in the vicinity of a specific particle considered. This 

location is indicated by lbest. If the particle considered the entire population as its 

destination, the best value is a global best and it means a gbest. 

The concept of PSO consists in changing the speed (acceleration) of each 

particle to its pbest and lbest locations (local version of PSO) at each iteration. 

Acceleration is weighted by random member, with separate random numbers. 

In recent years, PSO has been successfully applied in many areas of research and 

applications. It has been demonstrated that PSO obtained better results (mainly in 

terms of convergence of the search process) with a faster and cheaper way compared 

to other evolutionary methods. 

In [22] is offered a hybrid algorithm combining optimization by swarm particles 

and simulated annealing procedure to solve the problem in a flexible production 

schedule. 

In [23] is offered a hybrid algorithm of PSO and TS to solve the flexible job 

shop scheduling problem. 

In [13] is suggested a novel hybrid algorithm, where PSO was used to produce a 

swarm of high quality candidate solutions, while TS was used to obtain a near 

optimal solution around the given good solution. The computational results have 

proved that the proposed hybrid algorithm is efficient and effective for solving FJSP, 

especially for the problems with large scale. 

In [18] is proposed a novel initialization method based on the improved Kacem 

assignments scheme. Experimental results indicate that this method is efficient and 

competitive compared to some existing methods. 

In [24] is proposed a new effective multi-objective approach based on the 

hybridization of the particle swarm optimization (PSO) and local search algorithm of 

variable neighborhood search (VNS) to solve the FJSP for minimizing the makespan, 

the maximal machine workload, and the total workload of machines.  

Discrete PSO (DPSO) is a modified version of PSO which applies discrete or 

qualitative distinction between variables. Some authors consider the DPSO as a good 

tool solving combinatorial optimization problems due to its easy implementation, 

simple structure and robustness (see [15, 19]). In [14] is stated that DPSO algorithms 

could be classified in five categories. In [10] is proposed a DPSO algorithm with 

particles including binary variables. 

Many studies pointed out that the use of PSO to solve problems with continuous 

variables in a convex feasible domain is characterized by its high convergence. 

Unfortunately in the case of combinatorial optimization problems as JSSP the results 

concerning the convergence are not so good. This is due to the fact, that the moving a 

particle is performed by reassigning the operations on machines using stochastic 

operators or logistic functions (see [5, 8]). Assigning the operations on randomly 

(with an uniform distribution) chosen machines, the probability p to assign an 

operation on the optimal machine in case that there are m  3 machines and only one 
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machine process this operation in optimal time is p  ½. The probability P, all the 

operations to be reassigned on the optimal machines (with the shortest processing 

times for the corresponding operations) is small. This probability decreases 

exponential according to the number of machines and the operations number. In the 

worst case it could be expressed as: Р ~ O(
l

m









1

1
), where m is the number of 

machines and l is the total sum of all operations in all jobs.  

There are many studies on solving the flexible job shop scheduling problem 

(FJSSP) based on heuristic approaches. Comprehensive surveys in this area are given 

in [11, 12, 20]. Important methods for this class of problems have been proposed in 

[2, 3, 6]. In [17] a mathematical model for FJSSP has been developed. The objective 

function is maximizing the total profit while meeting some constraints. 

In this paper is proposed a new fast PSO algorithm, called FPSO-FJSSP, which 

is based on strategic reassignment of operations on the optimal machines. The 

neighborhood of a particle is explored by strategic rearrangement of operations. After 

each rearrangement the rearranged operations are reassigned on the machines with 

earliest completion time (ECT), which if it is possible coincide with the optimal 

machines. 

2. PROBLEM FORMULATION AND A SET OF TEST EXAMPLES 

The formulation of the problem is the following: There is given a set of n jobs: 

J1, ..., Jn, which have to be performed on m machines M1, ... , Mm. For each job there 

is given operations consequence: Ji = (Oi,1, ..., Oi, in  ), where ni is the number of 

operations for the corresponding job, i = 1,..., n; 


n

i

in
1

= l, where l is the number of all 

operations Oi, in . This problem is called FJSSP (flexible job shop scheduling 

problem). The FJSPs (flexible job shop problems) are an extension of classical JSPs 

(job shop problems) taking into account the production flexibility. Unlike the 

classical JSP where each operation is processed on a predefined machine, each 

operation Oij in the FJSP can be processed on more than one machine. The possible 

machines are denoted by Mk, where Mk  Mij , Mij  M. If Mij  M for at least one 

operation, then there is a partial flexibility of JSSP (PFJSSP); while if Mij  M for 

each operation, there is a total flexibility of JSSP (TFJSSP). 

A set of benchmark test problems is given in [1]. The following set of test 

examples is used in this study: 1) M2J2O4 (two machines, two jobs and four 

operations) [4], M3J2O5 [16], M4J3O8 [18], M3J3O9 [21], M5J4O12 [9]. 

3. SIMPLE DESCRIPTION OF THE NEW FPSO-FJSSP ALGORITHM 

3.1. Concepts 

Definition: By Cmax is denoted the makespan, i. e. the maximum completion 

time for all operations in the schedule under consideration.  
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3.1.1 Calculate for each job Ji the sum Si, i = in,1 of the optimal times for all 

operations in this job. 

                      Si = ∑ min⁡(𝑡𝑗1 , … , 𝑡𝑗𝑚)
𝑛𝑖
𝑗=1 ,    for the job Ji, i =1, 𝑛; 

where ni is the number of operations in Ji. Put a weight wi = Si to each job Ji, i =1, 𝑛;. 

The jobs with higher weight should be included in the schedule as far as possible to 

the left (to the beginning of the schedule) in order the jobs with lower weight to be 

included in the schedule using the idle times of machines and the makespan to be 

minimal.  

3.1.2 If two jobs Ji and Jj have the same weight, we first assign on machines the 

operations of the job having a lower index. 

3.1.3 The operations in the schedule should be arranged in subsets according the 

corresponding jobs. The final schedule is called schedule in a canonical form.  

3.1.4 To each machine Mk, k = 1,𝑚; assign a number Rk corresponding to the 

number of times this machine proceeds an operation from all the jobs in  an optimal 

time (using the processing time table). Between two machines, higher priority has 

that one, which has smaller Rk. A machine M, which proceeds never in optimal time, 

does not take part in such comparisons. 

3.1.5 Assign the operations from the first job in the schedule on the optimal 

machines, taking into account the machine priorities. If there are more than one 

machine M with the same weight, assign the correspondent operation on the machine 

with earliest completion time, and if the completion times are equal, assign it on the 

machine with a smaller index. 

3.1.6 Continue to assign operations from the other jobs according the jobs’ 

weights. Each job should be assigned to an optimal machine if possible. If there is 

more than one optimal machine, a higher priority machine is selected. Calculate the 

completion times of all machines by checking the idle times (pauses) of the 

machines, if they can be used to process the current operation. Finally, operations are 

assigned to the machine, which has the least completion time. 

3.2. Stopping criteria 

– Global number of iterations; 

– There is no improvement of the makespan Cmax at the current iteration; 

– The best makespan in the population is equal to the maximal sum among the 

sums of optimal times for each job; 

– The best makespan in the population is equal to the sum of optimal times for 

all jobs, divided to the number of machines; 

3.3. Generating the initial population 

The initial population is calculated in the following manner: The current 

schedule is composed on the base of l generated random numbers r  (0, 1). The 

interval (0, 1) is divided in n parts, corresponding to each job. Each random number 

determines the current job, where one operation is taken from to be put in the 
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schedule. Taking the current operation from the chosen job, the constraint for the 

strong operations order/consequence is hold strictly. The operations are assigned on 

the machines according the rule on the first free machine, and if there are several free 

machines at one at the same time, the machine with the smallest index is chosen. In 

case the current job is completed (i.e. all its operations are included in the schedule), 

continue with the non-completed job, having smallest index. 

3.4. Algorithm FPSO-FJSSP 

The new algorithm FPSO-FJSSP is organized in the following steps: 

 

Step 1. Insert a number npart of all particles, included in the population. 

Step 2. Generate the initial population of npart particles by the procedure 

described in 3.3. 

Step 3. Set iteration counter icount = 1; 

Step 4. Iteration: Set the counter ipart = 1. 

Step 5. Bring the current particle (schedule) from the population in canonical 

form. 

Step 6. Move all operations from the job, where the bottleneck is occurred, as a 

subset to the left before the preceding job in the schedule. In case this is a step 

backwards, then don’t move these operations, but the operations from the last moved 

job. (Here is applied a Tabu strategy: the steps backwards are forbidden.) Reassign 

the moved operations and all operations after them in the schedule on the machines 

with earliest completion times, and if the completion times are equal, assign the 

corresponding operation on the machine with a smaller index. 

Step 7. Repeat Step 6 until no more movements are possible. 

Step 8. Save the schedule with the best obtained makespan Cmax. 

Step 9. If ipart = npart, set icount = icount +1. 

Step 10. check if the Stopping criteria, described in 3.2 are met. In this case go 

to Step 11. Otherwise set ipart = ipart +1. If ipart > npart go to Step 11, otherwise 

go to Step 4.  

Step 11. In the best obtained schedule, the last operation in the bottleneck 

machine is attempted to be assigned to another machine with the aim to improve its 

completion time and the makespan. 

Step 12. STOP. 

4. ILLUSTRATIVE EXAMPLE 

The following illustrative example is considered (see [9]):  
Job  Oper. M1 M2 M3 M4 M5 Job  Oper. M1 M2 M3 M4 M5 

 

J1 

O11 2 5 4 1 2  

J3 

O31 9 2 6 7 9 

O12 5 4 5 7 5 O32 6 1 2 5 4 

O13 4 5 5 4 5 O33 2 5 4 2 4 

 

J2 

O21 2 5 4 7 8 O34 4 5 2 1 5 

O22 5 6 9 8 5 J4 O41 1 5 2 4 12 

O23 4 5 4 54 5 O42 5 1 2 1 2 
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The sums of optimal processing times for the correspondent jobs are: 

(J1) = 9, (J2) = 11, (J3) = 10, (J4) = 2. According this values the priorities 

for performing the jobs are ordered as follows: J2, J3, J1, J4. 

Machine M1 performs optimally 6 of the operations. Machine M2 performs 

optimally 3 of the operations. Machine M3 performs optimally 2 of the operations. 

Machine M4 performs optimally 5 of the operations. Machine M5 performs optimally 

1 operation. Hence the priorities of machines are ordered as follows: M5, M3, M2, M4, 

M1.  

By convention the number used to denote the time means the end of the current 

time unit (e.g. of a second, hour, day, month or year). The obligatory constraints 

about the order/consequence of operations in the jobs are hold. In the following tables 

the first line is used for the starting times, the second for the machines numbers 

where the operations are assigned on, the third line is used for the jobs numbers, the 

fourth line is used for the operations numbers and the last (fifth) line is used for the 

final time. 

The following solution from the initial population is used to be improved:  

Schedule 0 (S0): 
0 1 0 4 0 11 2 9 7 13 11 15 

1 2 3 4 5 1 2 3 2 5 3 4 

4 4 1 1 3 1 2 3 2 2 3 3 

1 2 1 2 1 3 1 2 2 3 3 4 

1 2 4 11 9 15 7 11 13 18 15 16 

The Schedule 0 has Makespan(S0) = 18. 

This schedule is transferred to its canonical form by moving the operations O22 

and O23 to the left next to the operation O21 (with re-assigning them on other, if 

possible, optimal machines), the operation O32 is moved to the right (with re-

assigning on an optimal machine) next to the operation O33 and operation O31 is 

moved to the right to its successor operations without re-assigning because it starts 

from time 0. Operations O33 and O34 are also re-assigned on optimal machines 

following the machine priorities. In this way the new schedule with arrangement (J4, 

J1, J2, J3) is obtained:  

Schedule 1 (S1): 
0 1 0 4 11 2 7 12 0 9 11 13 

1 2 3 4 1 2 5 3 5 2 4 4 

4 4 1 1 1 2 2 2 3 3 3 3 

1 2 1 2 3 1 2 3 1 2 3 4 

1 2 4 11 15 7 12 16 9 10 13 14 

The Schedule 1 has Makespan(S1) = 16. An improvement of the makespan is 

obtained. The bottleneck is in J2. It is moved on block to the left before J1 (Step 6) 

with re-assignment of all operations in J2, J1 and J3 on, if possible, optimal machines.  

In this way, the new schedule with arrangement (J4, J2, J1, J3) is obtained: 
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Schedule 2 (S2): 

0 1 1 3 8 0 2 6 0 6 7 9 
1 2 1 5 3 4 2 4 3 2 4 4 

4 4 2 2 2 1 1 1 3 3 3 3 

1 2 1 2 3 1 2 3 1 2 3 4 

1 2 3 8 12 1 6 10 6 7 9 10 

The Schedule 2 has Makespan(S2) =  12. An improvement of the makespan is 

obtained. The bottleneck is again in J2. It is moved on block to the left before J4 (Step 

6) with re-assignment of all operations in J2, J4, J1 and J3 on, if possible, optimal 

machines. In this way the new schedule with arrangement (J2, J4, J1, J3) is obtained: 

Schedule 3 (S3): 
0 2 7 2 3 0 4 8 0 8 9 12/11 

1 5 3 1 2 4 2 4 3 2 1 4/3 

2 2 2 4 4 1 1 1 3 3 3 3 

1 2 3 1 2 1 2 3 1 2 3 4 

2 7 11 3 4 1 8 12 6 9 11 13 

The Schedule 3 has Makespan(S3) = 13. An improvement of the makespan is not 

obtained. The bottleneck is in J3. It is moved on block to the left before J1 (Step 6) 

with re-assignment of all operations in J3 and J1 on, if possible, optimal machines. In 

this way the new schedule with arrangement (J2, J4, J3, J1) is obtained: 

Schedule 4 (S4): 
0 2 7 2 3 0 6 7 9 0 3 8 

1 5 3 1 2 3 2 4 4 4 1 1 

2 2 2 4 4 3 3 3 3 1 1 1 

1 2 3 1 2 1 2 3 4 1 2 3 

2 7 11 3 4 6 7 9 10 1 8 12 

The Schedule 4 has Makespan(S4) = 12. An improvement of the makespan is not 

obtained. The bottleneck is in J1. The movement of J1 on block to the left before J3 is 

forbidden (Tabu strategy: the steps back are forbidden).  Hence J3 is moved on block 

to the left before J4 (Step 6) with re-assignment of all operations in J3, J4 and J1 on, if 

possible, optimal machines. In this way the new schedule with arrangement (J2, J3, J4, 

J1) is obtained: 

Schedule 5 (S5): 
0 2 7 0 6 7 9 2 3 0 3 8 

1 5 3 3 2 4 4 1 2 4 1 1 

2 2 2 3 3 3 3 4 4 1 1 1 

1 2 3 1 2 3 4 1 2 1 2 3 

2 7 11 6 7 9 10 3 4 1 8 12 

The Schedule 5 has Makespan(S5) = 12. An improvement of the makespan is not 

obtained. The bottleneck is in J1. It is moved on block to the left before J4 (Step 6) 

with re-assignment of all operations in J1 and J4 on, if possible, optimal machines. In 

this way the new schedule with arrangement (J2, J3, J1, J4) is obtained:  
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Schedule 6 (S6): 
0 2 7 0 6 7 9 0 1 5 2 3 

1 5 3 3 2 4 4 4 2 1 1 4 

2 2 2 3 3 3 3 1 1 1 4 4 

1 2 3 1 2 3 4 1 2 3 1 2 

2 7 11 6 7 9 10 1 5 9 3 4 

The Schedule 6 has Makespan(S6) = 11. An improvement of the makespan is 

obtained. The bottleneck is in J2. It corresponds to the sum of optimal processing 

times for this job. No more improvements are possible. This is the optimal solution. 

In the similar way are obtained the optimal schedules for the other examples as 

follows: 
 

M2J2O4: The makespan Cmax = 66. 

Optimal schedule: 

0 45 0 37 

1 1 2 2 

2 2 1 1 

1 2 1 2 

45 66 37 61 
 

M3J2O5: The makespan Cmax = 53. 

Optimal schedule: 

0 20 38 20 30 

1 2 2 1 3 

2 2 2 1 1 

1 2 3 1 2 

20 38 53 30 48 
 

M4J3O8: The makespan Cmax = 12. 

Optimal schedule: 

0 4 8 0 2 6 0 6/8 

3 1 3 1 4 4 2 2/4 

1 1 1 2 2 2 3 3 

1 2 3 1 2 3 1 2 

4 8 12 2 6 8 6 11 
 

M3J3O9: The makespan Cmax = 46. 

Optimal schedule: 

0 8 19 8 19 29 18 28 37 

1 2 3 1 2 3 1 2 3 

3 3 3 1 1 1 2 2 2 

1 2 3 1 2 3 1 2 3 

8 19 29 18 28 37 26 35 46 
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5. CONCLUSION 

Many heuristics and metaheuristics are developed to solve the FJSSP. It could 

be seen that the convergence for the combinatorial problems is smaller in comparison 

to that one for problems with continuous variables. The particle swarm optimization 

(PSO) is one of the most popular evolutionary techniques applied for the FJSSP, but 

its convergence is not very high.  

In this paper is presented a new enhanced FPSO-FJSSP algorithm, based on 

strategic rearrangement of the operations and of reassigning them on the optimal 

machines having earliest completion times. Five test examples are used. In all the 

cases the optimal schedules are obtained on the first iteration. 

The obtained results are very encouraging and show that the convergence of the 

new algorithm is very high, and the quality of the obtained solutions is very good. 

The created algorithm will be tested on a greater set of test examples including 

examples with larger size – up to 20 machines, 20 jobs and 100 operations. A 

comparison with other evolutionary and exact algorithms and methods will be done. 
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