
20-21 September 2017, BULGARIA 1 

Proceedings of the International Conference on 

Information Technologies (InfoTech-2017) 

20-21 September 2017, Bulgaria 

Invited paper 

COMPARISON OF WILD DOG ALGORITHM, BAT 

ALGORITHMS AND BIOGEOGRAPHY BASED 

OPTIMISATION 

Dr. Karl O. Jones, Tarek Zaibet and Grégoire Boizanté  

Department of Electronics and Electrical Engineering, Liverpool John Moores 

University, Liverpool 

e-mail: k.o.jones@ljmu.ac.uk  

United Kingdom 

Abstract: Evolutionary Computation (EC) is a diverse and growing research area. Some 

of the more recent developments within EC are African Wild Dog Algorithm (WDA), 
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in optimisation problems. This paper compares the effectiveness of these particular 

methods on an optimisation problem, in particular tuning a PID controller. 
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1. INTRODUCTION 

 

Algorithms that primarily take their principles of operation from processes within 

nature, such as animal behaviour, come within the field of Evolutionary Computation 

(EC).  

Probably the most widely known method in EC is Genetic Algorithms (GA): 

based on Darwin’s Theory of Evolution. GAs reproduce natural evolutionary 

procedures on a population representing solutions to a specific problem. GAs have 

been utilised for PID tuning, producing successful results [1]. Moreover, a range of 

industrial problems have successfully employed GAs: thus the GA is regarded as an 

effective optimisation method. Alternative EC schemes exploit agent cooperation, 

analogous to animal social behaviour, whereby if a single agent is unable to accomplish 

a task, an accompanying agent might be better placed to complete the task.  
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Probably the most common industrial controller is the Proportional-Integral-

Derivative (PID) controller. Its minimal structure allows for simple implementation, 

robust performance and application to numerous processes. Appropriate operation of 

the PID controller is subject to the determination of three parameters, namely 

proportional gain (Kp), integral action time (Ti) and derivative action time (Td). 

Frequently these three parameters are manually tuned using trial and error, which can 

take a significant amount of time. To surmount this problem, various procedures have 

been expounded to assist in parameter tuning, such as Ziegler-Nichols [2]. The primary 

issue of using these procedures is that the solution found only satisfies the defined 

performance criteria for that approach. Controller tuning can be improved through 

using optimisation techniques, and especially those based on Evolutionary 

Computation. 

This paper continues from two earlier papers [3][4] which considered the 

applicability of tuning a PID controller using Bees Algorithm [5], Particle Swarm 

Optimisation [6], Differential Evolution [7] and the Firefly Algorithm [8]. 

 

 

2. OPTIMISATAION METHODS 

 

2.1 Biogeography-Based Optimisation (BBO) 

 

BBO is an algorithm and metaheuristic inspired by the biogeographic concepts of 

the evolution of new species, species migration between islands and the extinction of 

species [9]. BBO optimizes a problem by stochastically refining candidate solutions 

through a number of iterations, with respect to a defined fitness function. The BBO 

approach makes no assumptions about the problem, thus it is applicable to a wide class 

of problems. For example, it has been used for robot controller tuning [10], and for 

diagnosis of cardiac disease [11]. The operation of BBO is as follows: 

Step 1: Generate initial population (N) of candidate solutions (xk) 

Step 2: For each candidate xk, set emigration probability µk proportional to the fitness 

value for xk 

Step 3: For each xk, set immigration probability λk=1-µk. {zk} ← {xk} 

Step 4: For each individual in zk  

For each independent variable s ∈ [1,n]  

Step 5: Use λk to probabilistically decide whether to immigrate to zk 

Step 6: If immigrating, then use {µk} to probabilistically select the emigrating 

individual xj. zk(s) ← xj(s) 

Step 7: Next independent variable s ← s+1 

Step 8: Probabilistically mutate zk. Next individual k ← k+1 

Step 9 . {xk} ← {zk} 
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Step 10: Repeat Steps 2 to 9 until definite termination conditions are met, such as a 

pre-defined number of iterations or a failure to make progress for a fixed number of 

generations. 

 

2.2 Bat Algorithm (BA) 

 

The Bat algorithm is a recently developed nature inspired meta-heuristic 

optimization algorithm, based around on the echolocation behaviour of bats [12]. All 

species of bats use echolocation to sense distance, and to differentiate between prey 

(food) and background items. Bats fly randomly with velocity vi, at position xi, with a 

fixed frequency fmin, and loudness Ai to search for prey. As the bat searches for its prey, 

it changes the frequency, loudness and pulse emission rate, r, dependant on the 

proximity of the prey. BA has been applied on a continuous optimization problem by 

Parpinenli and Lopes [13]. The operation of the Bat Algorithm is: 

Step 1: Initialisation. Randomly spread the bats into the solution space. 

Step 2: Compute the fitness of each bat and find the current best. 

Step 3: Move the bats by generating new solutions by adjusting frequency, velocity 

and location, using: 

 )( minmaxmin ffffi    (1) 

    𝑣𝑖
𝑡=𝑣𝑖

𝑡−1 +(𝑥𝑡−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑥∗⃗⃗  ⃗) 𝑓𝑖          (2) 

 𝑣𝑖
𝑡⃗⃗⃗⃗ =𝑥𝑡−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  +𝑣𝑖

𝑡 (3) 

Step 4: Generate a random number. If it is greater than the fixed pulse emission rate, 

move the bat by the random walk process. 

Step 5: Evaluate the fitness of the bats and update the global near best solution. 

Step 6: Check the termination condition to decide whether go back to step 3 or 

terminate the program and output the near best result.  

 

2.3 African Wild Dog Algorithm (WDA) 

 

WDA is based upon the communal hunting behaviour of African wild dogs [13]. 

African wild dogs live in packs, dominated by a monogamous breeding pair. They are 

effective at cooperation and are led by the male leader when hunting. They depend on 

their sense of sight rather than smell, and pursue their prey in a long, open chase until 

the prey becomes exhausted. African wild dogs maintain contact with each other in a 

variety of ways such as voice, smell (olfactory) and posture (body language). They 

each have a very strong odour, hence they can effortlessly detect other group members 

at a distance. Pack members vocalize to help coordinate their movements. African wild 

dog algorithm operates by using an iterative approach to simulate their group hunting 

behaviour, that is, to find the optimal value. African wild dogs solve the optimization 
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problem through the steps of initializing dogs’ position, competing for the role of lead 

dog and collaborative moving. The algorithm is as follows: 

Step 1: Initialize algorithm parameters. Randomly initialize the wild dog pack such 

that they occupy as much of the entire search space as possible.  

Step 2: Determine the fitness value for each wild dog and hence sort the wild dogs. 

Step 3: Collaborative moving: the ith wild dog moves with a certain probability toward 

wild dog j that has a higher fitness value. The new position of wild dog i is given by: 

𝑥𝑖,𝑛𝑒𝑤 = 𝑥𝑖 + 𝑟𝑎𝑛𝑑 × (𝑥𝑖 − 𝑥𝑗) × (
𝑎𝑐

𝑏
)     (4) 

where rand is a random number between 0 and 1, a is the average Euclidean distance 

of all wild dogs and b is the Euclidean distance between wild dog i and wild dog j, and 

c is the iteration step coefficient: 

𝑐 = 1 − (
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

𝑀𝑎𝑥.𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
)      (5) 

Step 4: When hunting in packs, pack members vocalize to help coordinate their 

movements. Once they locate prey, African wild dogs quickly gather to the lead dog 

and round up the prey. When solving the objective function value, for this behaviour, 

generates a random number, rθ, within the range [0,1]. If rθ is greater than the pre-set 

threshold value, θ, then wild dog i moves towards the prey. Otherwise, it does not move 

and goes directly to the next iteration. The updated position is:  

𝑥𝑖
𝑡+1 = {

𝑥𝑖
𝑡                                𝑟𝑚 < 𝜃

𝑥𝑗 + 𝑟𝑎𝑛𝑑 × 𝑟𝑎        𝑟𝑚 > 𝜃
     (6) 

where ra is rounding up step length, xj is the position of the lead dog and xi
t is the current 

position of the ith wild dog in the tth iteration. In order to provide more accurate solving, 

he rounding up step length decreases throughout the iterations:  

𝑟𝑎(𝑡) = (𝑥𝑖𝑚𝑎𝑥 − 𝑥𝑖𝑚𝑖𝑛) × 𝑒−𝑀𝑎𝑥𝑔𝑒𝑛(𝑡)     (7) 

where Maxgen(t) represents the ith iteration. 

Step 5: Repeat step 2 to step 4 until the termination criterion is satisfied.  

 

 

3. APPLICATION RESULTS 

 

The investigation into the efficacy of the methods for controller tuning, was based 

on establishing suitable optimized PID values for a defined second order system with 

time delay, given by: 
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The process was presented with a unit step input, as shown in the Simulink model 

provided in Figure 1. The presence of the time-delay element poses a particular 

problem for PID tuning. A selection of cost functions were utilised in this work (Table 

1) to provide an appraisal of the action of the optimisation methods. There are alternate 
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cost functions that might be more effective for controller design; however, this work 

concentrates not on design but on the exploration of the optimisation algorithms. The 

result tables present the values of the determined PID parameters from the various 

algorithms, along with standard transient response criteria for the controlled system, 

such as the rise time, settling time (±2%) and percentage overshoot (Table 2-Table 5). 

 

 

Figure 1 Simulink model of the control system 

 

 

Table 1. Cost Functions Employed 

Cost Function: Result Table Transient 

Response 

ISE: Integral Square Error   𝐶𝐹 = ∫ 𝜀2𝑑𝑡 Table 2 Figure 2 

IAE: Integral Absolute Error 𝐶𝐹 = ∫|𝜀|𝑑𝑡 Table 3 Figure 3 

ITSE: Integral Time Square Error 𝐶𝐹 = ∫ 𝑡𝜀2𝑑𝑡 Table 4 Figure 4 

ITAE: Integral Time Absolute Error 𝐶𝐹 = ∫ 𝑡|𝜀|𝑑𝑡 Table 5 Figure 5 

 

 

Utilising the Zeigler-Nichols design criteria [2] as a comparison for controller 

performance (that is, 25% overshoot, an extended settling time and an intermediate rise 

time) then in all circumstances the BBO and BA tuned PID responses surpass these 

criteria. In fact, for all four cost functions, BBO and BA determine almost identical 

PID values. The performance of the WDA tuned controller varies depending on the 

cost function under consideration. For the ISE cost function, WDA produces PID 

values comparable to those from BBO and BA. For the ITSE cost function, WDA 

determines PID values that produce an improved overshoot over the BBO and BA 

determined values, although the settling time is much longer. Considering ITAE, WDA 

determines PID values that have a process performance that is similar to that for BBO 

and BA, however the performance of the IAE tuned PID is significantly below 

acceptable standards. 
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 Table 2. Results for the ISE cost function. 

Optimisation 

Algorithm 

PID Process Response 

Fitness value 
Kp Ti Td 

Overshoot (%) 

Settling time 

(2%) Rise Time (s) 

BBO 3.959 0.037 5.966 16.61 24.08 2.35 415.96 

BA 3.959 0.037 5.966 16.32 24.28 2.35 415.97 

WDA 3.965 0.038 6.061 16.53 24.38 2.34 415.97 

 
Table 3. Results for the IAE cost function. 

Optimisation 

Algorithm 

PID Process Response 

Fitness value 
Kp Ti Td Overshoot (%) 

Settling time 

(2%) 

Rise Time 

(s) 

BBO 3.265 0.029 4.384 5.58 13.96 2.93 957.21 

BA 3.264 0.029 4.384 5.57 13.96 2.93 957.23 

WDA 3.624 0.038 8.072 10.1 43.52 8.54 1093.10 

 
Table 4. Results for the ITSE cost function. 

Optimisation 

Algorithm 

PID Process Response 

Fitness value 
Kp Ti Td 

Overshoot (%) 

Settling time 

(2%) 

Rise Time 

(s) 

BBO 3.684 0.034 5.303 12.24 17.35 2.53 924.99 

BA 3.684 0.034 5.303 12.24 17.35 2.53 924.99 

WDA 3.784 0.039 6.916 8.69 30.37 2.45 970.89 

 
Table 5. Results for the ITAE cost function. 

Optimisation 

Algorithm 

PID Process Response 

Fitness value 
Kp Ti Td 

Overshoot (%) 

Settling time 

(2%) 

Rise Time 

(s) 

BBO 3.023 0.028 3.702 3.07 13.42 3.34 1518.46 

BA 3.022 0.028 3.700 3.06 13.41 3.34 1518.46 

WDA 2.362 0.025 1.491 3.57 14.74 4.60 2008.96 

 

 
Figure 2. Responses for ISE cost function. 

 

 
Figure 3. Responses for IAE cost function. 
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Figure 4. Responses for ITSE cost function. 

 

 
Figure 5. Responses for the ITAE cost function. 

 

 

4. CLOSING COMMENTS 

 

Regarding the transient responses of the controlled system, two of the three EC 

algorithms (BBO and BA) are able to determine PID values the give process transient 

responses that are an improvement over the classical Zeigler-Nichols response. BBO 

and BA produce very similar PID values for all cost functions, suggesting that their 

approaches to determining a solution is similar. The outcome for the WDA is somewhat 

mixed, in that its performance seems linked to the cost function employed.  

 

The power of Evolutionary Computation approaches comes from the parallel 

nature of their search capabilities. Techniques such as those considered in this work, 

have presented themselves as successful solutions for optimisation problems. In spite 

of this, it should be noted that these algorithms are not a universal solution, despite 

their apparent robustness. Each approach has a range of control parameters that the user 

must set, and it is the apt selection of these parameters that is fundamental to the 

algorithm’s success. Furthermore, one problem remains for all algorithms, specifically 

the proper selection of the cost function: an issue with all optimisation techniques. 
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