
20-21 September 2017, BULGARIA 1

Proceedings of the International Conference on

Information Technologies (InfoTech-2017)

20-21 September 2017, Bulgaria

Invited paper

COMPARISON OF WILD DOG ALGORITHM, BAT

ALGORITHMS AND BIOGEOGRAPHY BASED

OPTIMISATION

Dr. Karl O. Jones, Tarek Zaibet and Grégoire Boizanté

Department of Electronics and Electrical Engineering, Liverpool John Moores

University, Liverpool

e-mail: k.o.jones@ljmu.ac.uk

United Kingdom

Abstract: Evolutionary Computation (EC) is a diverse and growing research area. Some

of the more recent developments within EC are African Wild Dog Algorithm (WDA),

Bat Algorithm (BA), and Biogeography Based Optimisation (BBO). These can all be used

in optimisation problems. This paper compares the effectiveness of these particular

methods on an optimisation problem, in particular tuning a PID controller.

Key words: African Wild Dog Algorithm, Bat Algorithm, Biogeography Based

Optimisation.

1. INTRODUCTION

Algorithms that primarily take their principles of operation from processes within

nature, such as animal behaviour, come within the field of Evolutionary Computation

(EC).

Probably the most widely known method in EC is Genetic Algorithms (GA):

based on Darwin’s Theory of Evolution. GAs reproduce natural evolutionary

procedures on a population representing solutions to a specific problem. GAs have

been utilised for PID tuning, producing successful results [1]. Moreover, a range of

industrial problems have successfully employed GAs: thus the GA is regarded as an

effective optimisation method. Alternative EC schemes exploit agent cooperation,

analogous to animal social behaviour, whereby if a single agent is unable to accomplish

a task, an accompanying agent might be better placed to complete the task.

PROCEEDINGS of the International Conference InfoTech-2017 2

Probably the most common industrial controller is the Proportional-Integral-

Derivative (PID) controller. Its minimal structure allows for simple implementation,

robust performance and application to numerous processes. Appropriate operation of

the PID controller is subject to the determination of three parameters, namely

proportional gain (Kp), integral action time (Ti) and derivative action time (Td).

Frequently these three parameters are manually tuned using trial and error, which can

take a significant amount of time. To surmount this problem, various procedures have

been expounded to assist in parameter tuning, such as Ziegler-Nichols [2]. The primary

issue of using these procedures is that the solution found only satisfies the defined

performance criteria for that approach. Controller tuning can be improved through

using optimisation techniques, and especially those based on Evolutionary

Computation.

This paper continues from two earlier papers [3][4] which considered the

applicability of tuning a PID controller using Bees Algorithm [5], Particle Swarm

Optimisation [6], Differential Evolution [7] and the Firefly Algorithm [8].

2. OPTIMISATAION METHODS

2.1 Biogeography-Based Optimisation (BBO)

BBO is an algorithm and metaheuristic inspired by the biogeographic concepts of

the evolution of new species, species migration between islands and the extinction of

species [9]. BBO optimizes a problem by stochastically refining candidate solutions

through a number of iterations, with respect to a defined fitness function. The BBO

approach makes no assumptions about the problem, thus it is applicable to a wide class

of problems. For example, it has been used for robot controller tuning [10], and for

diagnosis of cardiac disease [11]. The operation of BBO is as follows:

Step 1: Generate initial population (N) of candidate solutions (xk)

Step 2: For each candidate xk, set emigration probability µk proportional to the fitness

value for xk

Step 3: For each xk, set immigration probability λk=1-µk. {zk} ← {xk}

Step 4: For each individual in zk

For each independent variable s ∈ [1,n]

Step 5: Use λk to probabilistically decide whether to immigrate to zk

Step 6: If immigrating, then use {µk} to probabilistically select the emigrating

individual xj. zk(s) ← xj(s)

Step 7: Next independent variable s ← s+1

Step 8: Probabilistically mutate zk. Next individual k ← k+1

Step 9 . {xk} ← {zk}

20-21 September 2017, BULGARIA 3

Step 10: Repeat Steps 2 to 9 until definite termination conditions are met, such as a

pre-defined number of iterations or a failure to make progress for a fixed number of

generations.

2.2 Bat Algorithm (BA)

The Bat algorithm is a recently developed nature inspired meta-heuristic

optimization algorithm, based around on the echolocation behaviour of bats [12]. All

species of bats use echolocation to sense distance, and to differentiate between prey

(food) and background items. Bats fly randomly with velocity vi, at position xi, with a

fixed frequency fmin, and loudness Ai to search for prey. As the bat searches for its prey,

it changes the frequency, loudness and pulse emission rate, r, dependant on the

proximity of the prey. BA has been applied on a continuous optimization problem by

Parpinenli and Lopes [13]. The operation of the Bat Algorithm is:

Step 1: Initialisation. Randomly spread the bats into the solution space.

Step 2: Compute the fitness of each bat and find the current best.

Step 3: Move the bats by generating new solutions by adjusting frequency, velocity

and location, using:

)(minmaxmin ffffi (1)

 𝑣𝑖
𝑡=𝑣𝑖

𝑡−1 +(𝑥𝑡−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑥∗⃗⃗ ⃗) 𝑓𝑖 (2)

 𝑣𝑖
𝑡⃗⃗⃗⃗ =𝑥𝑡−1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ +𝑣𝑖

𝑡 (3)

Step 4: Generate a random number. If it is greater than the fixed pulse emission rate,

move the bat by the random walk process.

Step 5: Evaluate the fitness of the bats and update the global near best solution.

Step 6: Check the termination condition to decide whether go back to step 3 or

terminate the program and output the near best result.

2.3 African Wild Dog Algorithm (WDA)

WDA is based upon the communal hunting behaviour of African wild dogs [13].

African wild dogs live in packs, dominated by a monogamous breeding pair. They are

effective at cooperation and are led by the male leader when hunting. They depend on

their sense of sight rather than smell, and pursue their prey in a long, open chase until

the prey becomes exhausted. African wild dogs maintain contact with each other in a

variety of ways such as voice, smell (olfactory) and posture (body language). They

each have a very strong odour, hence they can effortlessly detect other group members

at a distance. Pack members vocalize to help coordinate their movements. African wild

dog algorithm operates by using an iterative approach to simulate their group hunting

behaviour, that is, to find the optimal value. African wild dogs solve the optimization

PROCEEDINGS of the International Conference InfoTech-2017 4

problem through the steps of initializing dogs’ position, competing for the role of lead

dog and collaborative moving. The algorithm is as follows:

Step 1: Initialize algorithm parameters. Randomly initialize the wild dog pack such

that they occupy as much of the entire search space as possible.

Step 2: Determine the fitness value for each wild dog and hence sort the wild dogs.

Step 3: Collaborative moving: the ith wild dog moves with a certain probability toward

wild dog j that has a higher fitness value. The new position of wild dog i is given by:

𝑥𝑖,𝑛𝑒𝑤 = 𝑥𝑖 + 𝑟𝑎𝑛𝑑 × (𝑥𝑖 − 𝑥𝑗) × (
𝑎𝑐

𝑏
) (4)

where rand is a random number between 0 and 1, a is the average Euclidean distance

of all wild dogs and b is the Euclidean distance between wild dog i and wild dog j, and

c is the iteration step coefficient:

𝑐 = 1 − (
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

𝑀𝑎𝑥.𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
) (5)

Step 4: When hunting in packs, pack members vocalize to help coordinate their

movements. Once they locate prey, African wild dogs quickly gather to the lead dog

and round up the prey. When solving the objective function value, for this behaviour,

generates a random number, rθ, within the range [0,1]. If rθ is greater than the pre-set

threshold value, θ, then wild dog i moves towards the prey. Otherwise, it does not move

and goes directly to the next iteration. The updated position is:

𝑥𝑖
𝑡+1 = {

𝑥𝑖
𝑡 𝑟𝑚 < 𝜃

𝑥𝑗 + 𝑟𝑎𝑛𝑑 × 𝑟𝑎 𝑟𝑚 > 𝜃
 (6)

where ra is rounding up step length, xj is the position of the lead dog and xi
t is the current

position of the ith wild dog in the tth iteration. In order to provide more accurate solving,

he rounding up step length decreases throughout the iterations:

𝑟𝑎(𝑡) = (𝑥𝑖𝑚𝑎𝑥 − 𝑥𝑖𝑚𝑖𝑛) × 𝑒−𝑀𝑎𝑥𝑔𝑒𝑛(𝑡) (7)

where Maxgen(t) represents the ith iteration.

Step 5: Repeat step 2 to step 4 until the termination criterion is satisfied.

3. APPLICATION RESULTS

The investigation into the efficacy of the methods for controller tuning, was based

on establishing suitable optimized PID values for a defined second order system with

time delay, given by:

1817

7
2

3

ss

e
G

s

 (8)

The process was presented with a unit step input, as shown in the Simulink model

provided in Figure 1. The presence of the time-delay element poses a particular

problem for PID tuning. A selection of cost functions were utilised in this work (Table

1) to provide an appraisal of the action of the optimisation methods. There are alternate

20-21 September 2017, BULGARIA 5

cost functions that might be more effective for controller design; however, this work

concentrates not on design but on the exploration of the optimisation algorithms. The

result tables present the values of the determined PID parameters from the various

algorithms, along with standard transient response criteria for the controlled system,

such as the rise time, settling time (±2%) and percentage overshoot (Table 2-Table 5).

Figure 1 Simulink model of the control system

Table 1. Cost Functions Employed

Cost Function: Result Table Transient

Response

ISE: Integral Square Error 𝐶𝐹 = ∫ 𝜀2𝑑𝑡 Table 2 Figure 2

IAE: Integral Absolute Error 𝐶𝐹 = ∫|𝜀|𝑑𝑡 Table 3 Figure 3

ITSE: Integral Time Square Error 𝐶𝐹 = ∫ 𝑡𝜀2𝑑𝑡 Table 4 Figure 4

ITAE: Integral Time Absolute Error 𝐶𝐹 = ∫ 𝑡|𝜀|𝑑𝑡 Table 5 Figure 5

Utilising the Zeigler-Nichols design criteria [2] as a comparison for controller

performance (that is, 25% overshoot, an extended settling time and an intermediate rise

time) then in all circumstances the BBO and BA tuned PID responses surpass these

criteria. In fact, for all four cost functions, BBO and BA determine almost identical

PID values. The performance of the WDA tuned controller varies depending on the

cost function under consideration. For the ISE cost function, WDA produces PID

values comparable to those from BBO and BA. For the ITSE cost function, WDA

determines PID values that produce an improved overshoot over the BBO and BA

determined values, although the settling time is much longer. Considering ITAE, WDA

determines PID values that have a process performance that is similar to that for BBO

and BA, however the performance of the IAE tuned PID is significantly below

acceptable standards.

PROCEEDINGS of the International Conference InfoTech-2017 6

 Table 2. Results for the ISE cost function.

Optimisation

Algorithm

PID Process Response

Fitness value
Kp Ti Td

Overshoot (%)

Settling time

(2%) Rise Time (s)

BBO 3.959 0.037 5.966 16.61 24.08 2.35 415.96

BA 3.959 0.037 5.966 16.32 24.28 2.35 415.97

WDA 3.965 0.038 6.061 16.53 24.38 2.34 415.97

Table 3. Results for the IAE cost function.

Optimisation

Algorithm

PID Process Response

Fitness value
Kp Ti Td Overshoot (%)

Settling time

(2%)

Rise Time

(s)

BBO 3.265 0.029 4.384 5.58 13.96 2.93 957.21

BA 3.264 0.029 4.384 5.57 13.96 2.93 957.23

WDA 3.624 0.038 8.072 10.1 43.52 8.54 1093.10

Table 4. Results for the ITSE cost function.

Optimisation

Algorithm

PID Process Response

Fitness value
Kp Ti Td

Overshoot (%)

Settling time

(2%)

Rise Time

(s)

BBO 3.684 0.034 5.303 12.24 17.35 2.53 924.99

BA 3.684 0.034 5.303 12.24 17.35 2.53 924.99

WDA 3.784 0.039 6.916 8.69 30.37 2.45 970.89

Table 5. Results for the ITAE cost function.

Optimisation

Algorithm

PID Process Response

Fitness value
Kp Ti Td

Overshoot (%)

Settling time

(2%)

Rise Time

(s)

BBO 3.023 0.028 3.702 3.07 13.42 3.34 1518.46

BA 3.022 0.028 3.700 3.06 13.41 3.34 1518.46

WDA 2.362 0.025 1.491 3.57 14.74 4.60 2008.96

Figure 2. Responses for ISE cost function.

Figure 3. Responses for IAE cost function.

20-21 September 2017, BULGARIA 7

Figure 4. Responses for ITSE cost function.

Figure 5. Responses for the ITAE cost function.

4. CLOSING COMMENTS

Regarding the transient responses of the controlled system, two of the three EC

algorithms (BBO and BA) are able to determine PID values the give process transient

responses that are an improvement over the classical Zeigler-Nichols response. BBO

and BA produce very similar PID values for all cost functions, suggesting that their

approaches to determining a solution is similar. The outcome for the WDA is somewhat

mixed, in that its performance seems linked to the cost function employed.

The power of Evolutionary Computation approaches comes from the parallel

nature of their search capabilities. Techniques such as those considered in this work,

have presented themselves as successful solutions for optimisation problems. In spite

of this, it should be noted that these algorithms are not a universal solution, despite

their apparent robustness. Each approach has a range of control parameters that the user

must set, and it is the apt selection of these parameters that is fundamental to the

algorithm’s success. Furthermore, one problem remains for all algorithms, specifically

the proper selection of the cost function: an issue with all optimisation techniques.

REFERENCES

[1] Herrero, J.M., et al. (2002). Optimal PID tuning with Genetic Algorithms for Non-Linear process

Models. IFAC 15th Triennial World Congress, Barcelona, Spain.

[2] Ziegler, J.G. and Nichols, N.B. (1942). Optimum settlings for automatic controllers. ASME

Transactions, (Vol. 64), pp. 759-768.

[3] Jones, K.O. and Bouffet, A. (2008). Comparison of Bees Algorithm, Ant Colony Optimisation,

and Particle Swarm Optimisation for PID Controller Tuning. 9th International Conference on

Computer Systems and Technologies. pp. IIIA.9-1(6).

[4] Jones, K.O. and Boizanté, G. (2011). Comparison of Firefly Algorithm Optimisation, Particle

PROCEEDINGS of the International Conference InfoTech-2017 8

Swarm Optimisation and Differential Evolution. 12th International Conference on Computer

Systems and Technologies. pp. 191-197.

[5] Pham D.T., Ghanbarzadeh A., Koç E., Otri S., Rahim S., and Zaidi M. (2006). The Bees

Algorithm, A Novel Tool for Complex Optimisation Problems. Proc 2nd Virtual International

Conference on Intelligent Production Machines and Systems. Elsevier (Oxford), pp.454-459.

[6] Kennedy, J. and R.C. Eberhart. (2001). Swarm Intelligence. Morgan Kaufman Publishers.

[7] Storn, R. and K. Price. (1995). Differential Evolution – A Simple and Efficient Adaptive Scheme

for Global Optimisation over Continuous Spaces. Technical Report TR-95-012, ICSI. Available

via ftp://ftp.icsi.berkeley.edu/pub/techreports/1995/tr-95012.ps.z

[8] Yang, X.S. (2008). Nature-Inspired Metaheuristic Algorithms, Luniver Press, UK.

[9] Simon, D. (2008). Biogeography-Based Optimisation. IEEE Transactions on Evolutionary

Computation, Vol. 12, No. 6, pp. 702-713.

[10] Thomas, G. , Lozovyy, P. and Simon, D. (2011). Fuzzy Robot Controller Tuning with

Biogeography-Based Optimization. 24th International Conference on Industrial Engineering

and Other Applications of Applied Intelligent Systems, Syracuse, New York, pp. 319-327.

[11] Ovreiu, M. and Simon, D. (2010). Biogeography-based optimization of neuro-fuzzy system

parameters for diagnosis of cardiac disease. Genetic and Evolutionary Computation

Conference, Portland, Oregon, pp. 1235-1242.

[12] Yang, X.S. (2010). A new mataheuristic bat inspired algorithm. In Nature Inspired Cooperative

Strategies for Optimization. Eds. González, J.R., Pelta, D.A., Cruz, C., Terrazas, G and

Krasnogor, N. Vol. 284. Pp. 65-74.

[13] Parpinelli, R. and Lopes, H. (2011). New inspirations in swarm intelligence: a survey.

International Journal of Bio-Inspired Computation. Vol. 3 Issue 1, pp. 1-16.

[14] Buttar A.S., Goel A. K. and Kumar S. (2010). Wild Intelligence: A Novel Intelligence as Dog

Group Wild Chase & Hunt Drive (DGWCHD). Indian Patent Office Journal, Issue No.14, pp

7873.

