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Abstract: Artificial neural networks (ANN) are well known and widely used from 

decades. One of the most popular is the multilayer perceptron (MLP). MPL’s general 

characteristic is that it has more than one layer. The most used topology of MLP has 

three layers (input, hidden and output). Layers are fully-connected, between each other 

(the input with the hidden layer and the hidden layer with the output). The general 

disadvantage of this topology is the lack of recurrent connections. The common usage of 

MLP is to solve only a single task. This research addresses these two common features 

of the MLP. 
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1. INTRODUCTION 

 

A general description of classical ANN is a weighted directed graph [1]. 

Networks usually consist of neurons and connections between them. The way in 

which neurons are connected between each other is called topology of the network 

[2]. There are many topologies, but MLP is one of the most popular [3]. As its name 

implies, MLP consists of layers. Many layers can be used in MLP, but the simplest 

implementation is the three layers topology [4]. Neurons in a neighboring layers are 

usually fully connected [5]. It means that each neuron in one layer has connections to 

all neurons of the neighboring layer. The neurons in the input layer are connected 

with the external for the ANN world [6]. If the input has undesired noise, Kalman 

filter could be applied [7]. The output neurons are connected again with the external 

for the ANN world [6]. In the classical MLP networks the information goes from the 

input to the output and in some cases permutation of the neurons in the hidden layer 
                                                           
1  This work was supported by private funding of Velbazhd Software LLC. 
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can be applied [8]. Such networks do not have feedback connections. Sometimes 

information can travel backward depending on the training algorithm and neurons 

activation function [9]. Such case is the backpropagation training where ANN total 

error is distributed backward in order ANN weights to be adjusted. In [10] a 

hierarchical topology of ANN is proposed that is suitable for big data analysis of 

time series. If MLP is accepted as monolithic base more advanced topologies can be 

created. 

In this study, MLPs sharing use of the hidden layer is proposed. Such hidden 

layer sharing allows knowledge transfer between MPLs. Pairing of MLPs is also 

proposed thus recurrent connections can be used and effect of keeping of ANN 

memory can be achieved.  

The paper is organized as follows: Section 1 introduces the problem; Section 2 

presents an ANN topology proposition; Section 3 gives some experiment details; 

Section 4 concludes and some further ideas for research are pointed. 

 

 

2. TOPOLOGY PROPOSITION 

 

A common disadvantage of the classical MLP is the absence of backward links. 

Due to the lack of such links there is no short term memory presented in such ANN 

topology. 

 

 
Fig. 1. MLP pairs with hidden layer sharing. 
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If simple MLPs are taken as building blocks of a more complex ANN, a 

variation of short term memory can be implemented (Fig. 1). The model proposed in 

this study uses four simple MLPs. The hidden layers of the two major MPLs are 

merged into a bigger shared layer. Such modification of the topology gives a way in 

which the information from the left MPL can travel to the right MPL and vice versa. 

Two other supportive MPLs are connected to the output of the major MPLs. The task 

of the supportive MPLs is to return some a part of the signal to the input of the ANN 

structure. The output of the supportive MPLs is supplied at the shared hidden layer. 

As expected values (target output) on the supportive MPLs the input for major MPLs 

is used. 

 

 

3. EXPERIMENTS 

 

The experiments are made with Encog Neural Networks Framework for Java. 

 

 
Fig. 2. Currencies values for two months on daily basis - EUR/USD currency pair. 
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As input data, currencies values are used. One half of the ANN is supplied with 

EUR/USD values (Fig. 2). The other half of the ANN is supplied with USD/JPY 

values (Fig. 3). All data are normalized according to the activation function levels. 

Data are separated in three sets: training (75%), testing (20%) and validation (5%). 

Validation set appears to be the most important part of the training, to evaluate the 

forecasting capabilities of the ANN are evaluated. 
 

It is clearly visible (Fig. 2 and Fig. 3) that the US economy is very related with 

the EU and Japanese economies. From forecasting point of view it is interesting that 

the correlation between both charts is negative. When EUR graph goes up the JPY 

graph goes down. It is something which ANN should learn and use effectively in the 

shared hidden layer.  

 

 
Fig. 3. Currencies values for two months on daily basis - USD/JPY currency pair. 
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4. CONCLUSION 

 

MLP based topologies can be very promising for financial time series 

forecasting. Two MLPs are modified in such way that they share common hidden 

layer. Both MPLs have the task to forecast currency values (EUR/USD for the first 

one and USD/JPY for the second one). The lack of recurrent connections is 

overcome by pairing each of the MLPs with another two MPLs. Pairs are completed 

in such a way that the output of one MPL is taken as input for its pairing MPL and 

the output of the pairing MPL is supplied to the original input. By such structure of 

four MPLs a knowledge transfer is achieved through the shared hidden layer and 

short term memory is presented by means of the pairs. As further research this 

approach can be combined with Generalized Nets [11, 12].  
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