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Abstract: This article focuses on the application of deep learning techniques in 

sequential games. The main hypothesis is that sequence to sequence learning approach 

is applicable and demonstrate better performance than classic reinforcement learning. So 

autonomous agents trough sequence to sequence approach are capable of discovering 

good solutions to the problem at hand by learning in dynamic environment. 
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1. INTRODUCTION 

 

The construction of an autonomous behavioral agent is an important issue with 

regard to the application of the results in various fields such as robotics, and 

autonomous decision-making. We study the relevance of the Sequence to Sequence( 

S2S) model for building autonomous agent plans in the Sequential Games (SG) area. 

In recent years, deep neural networks, and in particular the S2S approach, have been 

widely used in are of machine translation.  

In this study we pose the question: is it S2S applicable to the approach of 

building agent plans in the field of Sequential Games. In addition, we study what is 

the impact of different optimization algorithms and attention mechanisms on learning 

performance of S2S approach. This research may enable us to better understand and 

control the autonomous agents behavior in complex Sequential games.  

The reward function is an very import in regard of transferring the knowledge 

gain. Ng investigates conditions under which modifications to the reward function of 

a MDP preserve the optimal policy [10]. Konidaris introduces shaping rewards in 
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reinforcement learning tasks,  that result in accelerated learning in late tasks that are 

related but distinct [9].  

Game Theory is a well-established paradigm for shaping behavior and building 

up plans in the field of autonomous agents and systems. Models and algorithms in 

the field of machine learning provide theoretical solutions based on the learned 

behavior patterns [12, 13, 14]. Recently, using the power of deep learning modeling, 

strengthening learning has been successfully used for numerous tasks, including 

Atari  and Go, robotic manipulations  and sequential data generation [16]. 

Sequence to sequence neural networks are two encoder and decoder blocks, and 

some hidden inner state layer that connects them[6]. In turn, the encoder consists of a 

chain of recurrent cells (in implementation it can be either one or several)[7]. In 

recent years, several articles have been published that successfully apply S2S models 

in the field of machine translation [2,3]. There are several [4,5] solutions based on 

Recurrent Neural Networks RNN and Long Short Term Memory. 

In this paper we study the applicability of the S2S approach to build plans in a 

dynamic environment. In addition, we experimentally investigate the impact of some 

parameters on the S2S model on the efficiency of learning. Our main hypothesis is 

that S2S are capable to build adequate sequences of action in sequential games. 

The article is organized as follows: in the second part we give a brief 

description of the theoretical foundations and the implementation of a proposed 

solution. In the third part we describe the experimental setting and present the 

obtained results . In the final part we discuss the applicability of S2S in the field of 

building autonomous agents' behavior. 

 

 

2. METHODS AND MATERIALS 

 

By describing some of the important issues of building a behavior in a dynamic 

environment, the traditional framework of game theory can not represent the 

complete complexity of agent training. An important part of the problem is to make 

rational solutions in a state of transition. That is why we are now looking at an 

extended framework in which we generalize both sequential games and MDP. 

2.1 Markov Decision Process 

Markov Decision Process (MDP): We formulate the transfer learning problem 

in sequential decision making domains using the following framework of Markov 

Decision Process. 

 We use the following definition of MDP as a 5-tuple < S, A, T, R, g> where the 

set of states, set of actions, transition function and reward function are described. 

And P : S × A → T(S) (2) is a transition function that maps the probability of moving 

to a new state given an action and the current state, R : S × A → R is a reward 
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function, that gives the immediate reward of taking an action in a state. And g ∈  [0, 

1) is the discount factor.  

So, the MDP of the agent is described tuple where S is the set of states, A is the 

set of actions, P is transition function and R is a reward function. The transition 

function P maps the the probability of moving to a new state given an action and the 

current states. The reward functions R that gives the immediate reward of taking an 

action and the discount factor g. 

2.2 Sequence to sequence neural networks 

Sequence to sequence neural networks are two encoder and decoder blocks, and 

some hidden inner state layer that connects them. In turn, the encoder consists of a 

chain of recurrent cells (in implementation it can be either one or several). 

Recurrent Neural Network (RNN) [16] is a natural generalization of neural 

networks to sequences. Given the sequence of inputs (x1, ..., xT), the standard RNN 

computes a sequence of outputs (y1, ..., yT) by iteration. RNN can easily assign 

sequences to sequences when alignment between inputs is previously known. 

However, it is not easy to implement RNN for problems where input and output 

sequences have different lengths. 

One simple strategy for general sequence training is to translate the input 

sequence to a fixed-size vector using an RNN and then to transfer the vector in the 

target sequence to another RNN. 

Even when all relevant information is provided to RNNs, it is difficult to train 

RNNs due to long-term dependencies. To overcome this difficulty, you need to apply 

a memory method. Long Short Term Memory (LSTM) [1] is an approach that can 

resolve these dependencies. The purpose of LSTM is to evaluate the  probability p 

(y1, ..., yTo | x1, ..., xTi) where (x1, ..., xTi) is an input sequence and y1 ,. ,, yT ' is its 

corresponding output sequence whose length Ti may be different from To. 

In addition to the basic S2S approach, we will look at two algorithms that apply 

the mechanism of caution, this approach was first introduced by Bahdanau [19], then 

refined by Luong [8]. The main idea of the mechanism of attention is to establish 

direct links between the target and the source, paying attention to the relationship 

between states and actions. 

We also explore the impact of two optimization methods (AdaGrad and Adam ), 

using the approach described in [18]. In AdaGrad, some parameters are updated 

much more frequently than others, and so the training frequency for each parameter 

is dynamically adjusted [15]. Adam is now a popular optimization method, as it 

greatly accelerates convergence and thus reduces experimental cycles. The 

deficiency of the method is, that it is prone to  over-fitting [17]. 

2.3 Implementation 

We represent the environment as a discreet NxN game as shown in Figure 1. 

The goal of the agent is to move from the starting position to the ultimate goal by 

avoiding obstacles and collecting prizes. In order for this task to be accomplished 
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with a minimum number of actions, the agent should use a rational approach to 

building a plan. 

In our study, we will seek to translate the map of the environment into the 

sequence of actions, goals, and rewards. In this way, we are as close as possible to 

the main purpose of the S2S models: the translation of an incoming sequence from 

one "language" into a corresponding sequence from another "language". 

For this purpose, we have to construct from the environment a sequence of 

symbols. We create such a sequence by encoding the starting position, end goal, 

obstacle, and rewards as symbols. Moreover, in the case of 2-dimensional "world" 

we simply "unfold" the two-dimensional map in one-dimensional sequence as shown 

in Figure 2. 

 
Fig. 1. The Environment is defined as a NxN grid 

The problem is to give a sequence of actions from a set of actions ["left", 

"right", "up", "down", "take", "attack"] in such way that our agent could reach 

“destination point” in  reasonable way as is shown on Figure 3. 

 

 
Fig. 2. The input sequence that represents enviromnent 

 

At the entrance, we need to submit the state of our world, consisting of separate 

cells, each of which can take one value from the set: ["space", "enemy", "life", 

"source point", "destination point"]. 

 

 
Fig. 3. The output sequence of actions 

 

We can display such a world in the form of a vector of 6 * 25 dimensions, and 

after that compressing this representation trough embedded algorithm. How ever 
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such a model will be very sensitive to the change in the number of cells and objects 

in this world. 

To get rid of this limitation, we can form the input layer as a sequence, where 

each element of this sequence is one object of our world. Thus, we will input 

sequences of different lengths (for different sizes of the simulated world) and in the 

process of training we will be able to expand the number of objects in our world. 

 

 

3. EXPERIMENTS AND RESULTS 

 

We present the experimental settings as follows: 

First we "construct" the neural network using TensorFlow[] and Python[].  

1. The first thing to do is define the input layers: 

2. Next, create the encoder layer. 

3. Here it is necessary to say that to reduce the dimension, the embedding 

mechanism is used, the mechanics of its implementation are already present in 

TensorFlow. 

4. Create RNN cell and add them to our network. 

5. The output of our subnet will consist of the output (conveyor) of the last 

RNN cell and its hidden state. We need only state. 

6. We pass to the decoder. 

7. Just like in the decoder, you need to prepare a layer of embedding. 

8. Next, create the first layer with recurrent cells and project their outputs onto a 

fully connected perceptron for further classification of the results. 

The outputs of the cells are fed to the fully connected layer of the classifier. In 

the decoder we will have two branches of the graph. The first branch is for learning, 

the other is for processing the final tasks. For training, we need to remove the last 

object from the target (those we want to get at the decoder output) of the sequences 

and add "GO" to the beginning of each target sequence. This is necessary, since we 

will train each cell separately and each of them must be given the correct input 

signal, and not the signal from the neighboring learning cell. 

 
[1525113964.7153]  Decoder is ready. 
[1525113964.7154]  Creating loss and optimization ... 
[1525113966.2723]  Network is ready. 
Epoch 1/100   Batch 20/65   Loss: 1.161   Validation loss: 1.279   Time: 0.0129s 
Epoch 1/100   Batch 40/65   Loss: 1.129   Validation loss: 1.263   Time: 0.0120s 
Epoch 1/100   Batch 60/65   Loss: 1.169   Validation loss: 1.192   Time: 0.0131s 
Epoch 2/100   Batch 20/65   Loss: 0.987   Validation loss: 1.088   Time: 0.0158s 
Epoch 2/100   Batch 40/65   Loss: 0.902   Validation loss: 1.005   Time: 0.0128s 
Epoch 2/100   Batch 60/65   Loss: 0.851   Validation loss: 0.882   Time: 0.0134s 
Epoch 3/100   Batch 20/65   Loss: 0.698   Validation loss: 0.792   Time: 0.0164s 
Epoch 3/100   Batch 40/65   Loss: 0.670   Validation loss: 0.725   Time: 0.0131s 

 

Fig. 4. The training is builded upon TensorFlow  
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In this study we will examine the convergence of the loss function as an 

assessment of the convergence of the learning process. In addition, we will examine 

the impact of the decoder type on the performance of the training scheme. We will 

explore a baseline approach and two Attention Mechanism cases: 

 

• base S2S 

• Attention Mechanism - Bahdanau 

• Attention Mechanism - Luong. 
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Fig. 5. The impact of Attention Mechanism on learning performance  

 

In the second experiment we will investigate the impact of the optimization 

method on the encoder and decoder. We will compare the performance of the 

learning process for two approaches: 

• AdaGrad 

• Adam 

 

For both experiments, five runs are made and Winzorized mean is taken, 

excluding 20% of the maximum and minimum elements. As a result, we get a 

sequence of steps to pass through our virtual labyrinth. 
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Fig. 6. The impact of optimization alghorithm 

 

The summary reward is used as a measure of performance. 

 

4. CONCLUSION 

 

 The results show that sequence to sequence  learning approach is applicable 

and demonstrate better performance than classic reinforcement learning. So 

autonomous agents trough sequence to sequence approach are capable of discovering 

good solutions to the problem at hand by learning in dynamic environment. 

 The impact of different factors for building of agent behaviour in sequential 

games  is discussed in this paper. The sequence to sequence approach is applied 

based on deep learning framework TensorFlow.  

The summary reward is used as a measure of performance. The results show 

that sequence to sequence  learning approach is applicable and demonstrate better 

performance than classic reinforcement learning. So autonomous agents trough 

sequence to sequence approach are capable of discovering good solutions to the 

problem at hand by learning in dynamic environment. 
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