
20-21 September 2018, BULGARIA 1

Proceedings of the International Conference on

Information Technologies (InfoTech-2018)

20-21 September 2018, Bulgaria

APPLICATION OF DEEP LEARNING APPROACH IN

SEQUENTIAL GAMES

Vanya Markova, Ventseslav Shopov

Bulgarian Academy of Sciences – Institute of Robotics

e-mails: markovavanya@yahoo.com, vkshopov@yahoo.com

Bulgaria

Abstract: This article focuses on the application of deep learning techniques in

sequential games. The main hypothesis is that sequence to sequence learning approach

is applicable and demonstrate better performance than classic reinforcement learning. So

autonomous agents trough sequence to sequence approach are capable of discovering

good solutions to the problem at hand by learning in dynamic environment.

Key words: sequence to sequence, sequential games, autonomous agents

1. INTRODUCTION

The construction of an autonomous behavioral agent is an important issue with

regard to the application of the results in various fields such as robotics, and

autonomous decision-making. We study the relevance of the Sequence to Sequence(

S2S) model for building autonomous agent plans in the Sequential Games (SG) area.

In recent years, deep neural networks, and in particular the S2S approach, have been

widely used in are of machine translation.

In this study we pose the question: is it S2S applicable to the approach of

building agent plans in the field of Sequential Games. In addition, we study what is

the impact of different optimization algorithms and attention mechanisms on learning

performance of S2S approach. This research may enable us to better understand and

control the autonomous agents behavior in complex Sequential games.

The reward function is an very import in regard of transferring the knowledge

gain. Ng investigates conditions under which modifications to the reward function of

a MDP preserve the optimal policy [10]. Konidaris introduces shaping rewards in

mailto:markovavanya@yahoo.com

PROCEEDINGS of the International Conference InfoTech-2018
2

reinforcement learning tasks, that result in accelerated learning in late tasks that are

related but distinct [9].

Game Theory is a well-established paradigm for shaping behavior and building

up plans in the field of autonomous agents and systems. Models and algorithms in

the field of machine learning provide theoretical solutions based on the learned

behavior patterns [12, 13, 14]. Recently, using the power of deep learning modeling,

strengthening learning has been successfully used for numerous tasks, including

Atari and Go, robotic manipulations and sequential data generation [16].

Sequence to sequence neural networks are two encoder and decoder blocks, and

some hidden inner state layer that connects them[6]. In turn, the encoder consists of a

chain of recurrent cells (in implementation it can be either one or several)[7]. In

recent years, several articles have been published that successfully apply S2S models

in the field of machine translation [2,3]. There are several [4,5] solutions based on

Recurrent Neural Networks RNN and Long Short Term Memory.

In this paper we study the applicability of the S2S approach to build plans in a

dynamic environment. In addition, we experimentally investigate the impact of some

parameters on the S2S model on the efficiency of learning. Our main hypothesis is

that S2S are capable to build adequate sequences of action in sequential games.

The article is organized as follows: in the second part we give a brief

description of the theoretical foundations and the implementation of a proposed

solution. In the third part we describe the experimental setting and present the

obtained results . In the final part we discuss the applicability of S2S in the field of

building autonomous agents' behavior.

2. METHODS AND MATERIALS

By describing some of the important issues of building a behavior in a dynamic

environment, the traditional framework of game theory can not represent the

complete complexity of agent training. An important part of the problem is to make

rational solutions in a state of transition. That is why we are now looking at an

extended framework in which we generalize both sequential games and MDP.

2.1 Markov Decision Process

Markov Decision Process (MDP): We formulate the transfer learning problem

in sequential decision making domains using the following framework of Markov

Decision Process.

 We use the following definition of MDP as a 5-tuple < S, A, T, R, g> where the

set of states, set of actions, transition function and reward function are described.

And P : S × A → T(S) (2) is a transition function that maps the probability of moving

to a new state given an action and the current state, R : S × A → R is a reward

20-21 September 2018, BULGARIA 3

function, that gives the immediate reward of taking an action in a state. And g ∈ [0,

1) is the discount factor.

So, the MDP of the agent is described tuple where S is the set of states, A is the

set of actions, P is transition function and R is a reward function. The transition

function P maps the the probability of moving to a new state given an action and the

current states. The reward functions R that gives the immediate reward of taking an

action and the discount factor g.

2.2 Sequence to sequence neural networks

Sequence to sequence neural networks are two encoder and decoder blocks, and

some hidden inner state layer that connects them. In turn, the encoder consists of a

chain of recurrent cells (in implementation it can be either one or several).

Recurrent Neural Network (RNN) [16] is a natural generalization of neural

networks to sequences. Given the sequence of inputs (x1, ..., xT), the standard RNN

computes a sequence of outputs (y1, ..., yT) by iteration. RNN can easily assign

sequences to sequences when alignment between inputs is previously known.

However, it is not easy to implement RNN for problems where input and output

sequences have different lengths.

One simple strategy for general sequence training is to translate the input

sequence to a fixed-size vector using an RNN and then to transfer the vector in the

target sequence to another RNN.

Even when all relevant information is provided to RNNs, it is difficult to train

RNNs due to long-term dependencies. To overcome this difficulty, you need to apply

a memory method. Long Short Term Memory (LSTM) [1] is an approach that can

resolve these dependencies. The purpose of LSTM is to evaluate the probability p

(y1, ..., yTo | x1, ..., xTi) where (x1, ..., xTi) is an input sequence and y1 ,. ,, yT ' is its

corresponding output sequence whose length Ti may be different from To.

In addition to the basic S2S approach, we will look at two algorithms that apply

the mechanism of caution, this approach was first introduced by Bahdanau [19], then

refined by Luong [8]. The main idea of the mechanism of attention is to establish

direct links between the target and the source, paying attention to the relationship

between states and actions.

We also explore the impact of two optimization methods (AdaGrad and Adam),

using the approach described in [18]. In AdaGrad, some parameters are updated

much more frequently than others, and so the training frequency for each parameter

is dynamically adjusted [15]. Adam is now a popular optimization method, as it

greatly accelerates convergence and thus reduces experimental cycles. The

deficiency of the method is, that it is prone to over-fitting [17].

2.3 Implementation

We represent the environment as a discreet NxN game as shown in Figure 1.

The goal of the agent is to move from the starting position to the ultimate goal by

avoiding obstacles and collecting prizes. In order for this task to be accomplished

PROCEEDINGS of the International Conference InfoTech-2018
4

with a minimum number of actions, the agent should use a rational approach to

building a plan.

In our study, we will seek to translate the map of the environment into the

sequence of actions, goals, and rewards. In this way, we are as close as possible to

the main purpose of the S2S models: the translation of an incoming sequence from

one "language" into a corresponding sequence from another "language".

For this purpose, we have to construct from the environment a sequence of

symbols. We create such a sequence by encoding the starting position, end goal,

obstacle, and rewards as symbols. Moreover, in the case of 2-dimensional "world"

we simply "unfold" the two-dimensional map in one-dimensional sequence as shown

in Figure 2.

Fig. 1. The Environment is defined as a NxN grid

The problem is to give a sequence of actions from a set of actions ["left",

"right", "up", "down", "take", "attack"] in such way that our agent could reach

“destination point” in reasonable way as is shown on Figure 3.

Fig. 2. The input sequence that represents enviromnent

At the entrance, we need to submit the state of our world, consisting of separate

cells, each of which can take one value from the set: ["space", "enemy", "life",

"source point", "destination point"].

Fig. 3. The output sequence of actions

We can display such a world in the form of a vector of 6 * 25 dimensions, and

after that compressing this representation trough embedded algorithm. How ever

20-21 September 2018, BULGARIA 5

such a model will be very sensitive to the change in the number of cells and objects

in this world.

To get rid of this limitation, we can form the input layer as a sequence, where

each element of this sequence is one object of our world. Thus, we will input

sequences of different lengths (for different sizes of the simulated world) and in the

process of training we will be able to expand the number of objects in our world.

3. EXPERIMENTS AND RESULTS

We present the experimental settings as follows:

First we "construct" the neural network using TensorFlow[] and Python[].

1. The first thing to do is define the input layers:

2. Next, create the encoder layer.

3. Here it is necessary to say that to reduce the dimension, the embedding

mechanism is used, the mechanics of its implementation are already present in

TensorFlow.

4. Create RNN cell and add them to our network.

5. The output of our subnet will consist of the output (conveyor) of the last

RNN cell and its hidden state. We need only state.

6. We pass to the decoder.

7. Just like in the decoder, you need to prepare a layer of embedding.

8. Next, create the first layer with recurrent cells and project their outputs onto a

fully connected perceptron for further classification of the results.

The outputs of the cells are fed to the fully connected layer of the classifier. In

the decoder we will have two branches of the graph. The first branch is for learning,

the other is for processing the final tasks. For training, we need to remove the last

object from the target (those we want to get at the decoder output) of the sequences

and add "GO" to the beginning of each target sequence. This is necessary, since we

will train each cell separately and each of them must be given the correct input

signal, and not the signal from the neighboring learning cell.

[1525113964.7153] Decoder is ready.
[1525113964.7154] Creating loss and optimization ...
[1525113966.2723] Network is ready.
Epoch 1/100 Batch 20/65 Loss: 1.161 Validation loss: 1.279 Time: 0.0129s
Epoch 1/100 Batch 40/65 Loss: 1.129 Validation loss: 1.263 Time: 0.0120s
Epoch 1/100 Batch 60/65 Loss: 1.169 Validation loss: 1.192 Time: 0.0131s
Epoch 2/100 Batch 20/65 Loss: 0.987 Validation loss: 1.088 Time: 0.0158s
Epoch 2/100 Batch 40/65 Loss: 0.902 Validation loss: 1.005 Time: 0.0128s
Epoch 2/100 Batch 60/65 Loss: 0.851 Validation loss: 0.882 Time: 0.0134s
Epoch 3/100 Batch 20/65 Loss: 0.698 Validation loss: 0.792 Time: 0.0164s
Epoch 3/100 Batch 40/65 Loss: 0.670 Validation loss: 0.725 Time: 0.0131s

Fig. 4. The training is builded upon TensorFlow

PROCEEDINGS of the International Conference InfoTech-2018
6

In this study we will examine the convergence of the loss function as an

assessment of the convergence of the learning process. In addition, we will examine

the impact of the decoder type on the performance of the training scheme. We will

explore a baseline approach and two Attention Mechanism cases:

• base S2S

• Attention Mechanism - Bahdanau

• Attention Mechanism - Luong.

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640

0,45

0,65

0,85

1,05

1,25

1,45

1,65

Impact of Attention Mechanism

Plain S2S

AM Bahdanau

AM Luong

Epochs

L
o

s
s

Fig. 5. The impact of Attention Mechanism on learning performance

In the second experiment we will investigate the impact of the optimization

method on the encoder and decoder. We will compare the performance of the

learning process for two approaches:

• AdaGrad

• Adam

For both experiments, five runs are made and Winzorized mean is taken,

excluding 20% of the maximum and minimum elements. As a result, we get a

sequence of steps to pass through our virtual labyrinth.

20-21 September 2018, BULGARIA 7

10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

21
0

23
0

25
0

27
0

29
0

31
0

33
0

35
0

37
0

39
0

41
0

43
0

45
0

47
0

49
0

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

Impact of optimization algorithm

AdaGrad

Adam

Epochs

L
o

s
s

Fig. 6. The impact of optimization alghorithm

The summary reward is used as a measure of performance.

4. CONCLUSION

 The results show that sequence to sequence learning approach is applicable

and demonstrate better performance than classic reinforcement learning. So

autonomous agents trough sequence to sequence approach are capable of discovering

good solutions to the problem at hand by learning in dynamic environment.

 The impact of different factors for building of agent behaviour in sequential

games is discussed in this paper. The sequence to sequence approach is applied

based on deep learning framework TensorFlow.

The summary reward is used as a measure of performance. The results show

that sequence to sequence learning approach is applicable and demonstrate better

performance than classic reinforcement learning. So autonomous agents trough

sequence to sequence approach are capable of discovering good solutions to the

problem at hand by learning in dynamic environment.

REFERENCES

[1] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8),

1735-1780.

[2] Yao, K., Cohn, T., Vylomova, K., Duh, K., & Dyer, C. (2015). Depth-gated recurrent neural

networks. arXiv preprint.

[3] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM:

A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10),

2222-2232.

PROCEEDINGS of the International Conference InfoTech-2018
8

[4] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., &

Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical

machine translation. arXiv preprint arXiv:1406.1078.

[5] Jozefowicz, R., Zaremba, W., & Sutskever, I. (2015, June). An empirical exploration of

recurrent network architectures. In International Conference on Machine Learning (pp. 2342-

2350).

[6]Kalchbrenner, N., & Blunsom, P. (2013). Recurrent continuous translation models. In

Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

(pp. 1700-1709).

[7] Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural

networks. In Advances in neural information processing systems (pp. 3104-3112).

[8] Luong, M. T., Le, Q. V., Sutskever, I., Vinyals, O., & Kaiser, L. (2015). Multi-task sequence to

sequence learning. arXiv preprint arXiv:1511.06114.

[9] Konidaris, G., and Barto, A. (2006). Autonomous shaping: Knowledge transfer in reinforcement

learning. In Proceedings of the 23rd international conference on Machine learning, 489–496.

ACM.

[10] Ng, A. Y.; Harada, D.; and Russell, S. (1999). Policy invariance under reward transformations:

Theory and application to reward shaping. In ICML, volume 99, 278–287.

[11]Cho, K., B. Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio. (2014) Learning phrase
represen-tations using RNN encoder-decoder for statistical machinetranslation. InArxiv preprint
arXiv:1406.1078,.

[12] Xu, H.; Ford, B.; Fang, F.; Dilkina, B.; Plumptre, A.; Tambe, M.; Driciru, M.; Wanyama, F.;

Rwetsiba, A.; Nsubaga, M.; et al. (2017) Optimal patrol planning for green security

games with black-box attackers. In International Conference on Decision and Game Theory

for Security, 458–477.Springer.

[13] Kar, D.; Ford, B.; Gholami, S.; Fang, F.; Plumptre, A.; Tambe, M.; Driciru, M.;

Wanyama, F.; Rwetsiba, A.; Nsubaga, M.; et al. (2017). Cloudy with a chance of poaching:

Adversary behavior modeling and forecasting with real-world poaching data. In Proceedings

of the 16th Conference on Autonomous Agents and MultiAgent Systems , 159–167.

[14] Gholami, S.; Ford, B.; Fang, F.; Plumptre, A.; Tambe, M.; Driciru, M.; Wanyama, F.;

Rwetsiba, A.; Nsubaga, M.; and Mabonga, J. (2017) Taking it for a test drive: a hybrid

spatio-temporal model for wildlife poaching prediction evaluated through a controlled field

test. In Proceedings of the European Conference on Machine Learning & Principles and

Practice of Knowledge Discovery in Databases, ECML PKDD

[15] Duchi, J., Elad Hazan, and Yoram Singer. (2011) Adaptive subgradient methods for online

learning and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159

[16] Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural

networks. In Advances in neural information processing systems (pp. 3104-3112).

[17] Diederik Kingma and Jimmy Ba. (2014) Adam: A method for stochastic optimization. ArXiv

preprint arXiv:1412.6980,.

[18] Neubig, G. (2017). Neural machine translation and sequence-to-sequence models: A tutorial.

arXiv preprint arXiv:1703.01619.

[19] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473.

