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Abstract: The paper describes application of differential evolution with modified 

mutation strategy to the global trajectory optimization problems. The problems are 

provided by the European Space Agency and represent trajectories of several well-

known spacecraft, namely, Cassini, Rosetta and Messenger. Using archive based 

differential evolution, global best solutions were found for these problems, and the best 

known solution was found for the Cassini mission. 
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1. INTRODUCTION 

 

In the last decades the evolutionary computation has shown itself to be 

successful in many areas and applications. First of all, evolutionary and swarm 

optimization techniques appeared to be very effective in solving complicated 

problems of search and design, where other methods are ineffective. These problems 

include numerical, integer, binary optimization, as well as permutation problems, 

such as travelling salesman problem. Moreover, evolutionary algorithms, namely 

genetic programming is capable of solving complex design problems for symbolic 

regression, control algorithm generation and many others [1]. 

One of the important numerical optimization problems is the spacecraft global 

trajectory optimization problem (GTOP) [2]. The main objective of such here is to 

find an optimal flight program, so that the spacecraft would achieve the desired orbit 
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or speed and direction with respect to some object. These problems usually contain 

tens of variables and represent significant problems for classical optimization 

techniques, because they are often defined as complex programs, involving a lot of 

computation. 

Evolutionary and swarm optimization techniques have been previously applied 

to such problems, and have shown themselves quite successful. However, the 

computation resources, required to achieve global optimum is usually unacceptable. 

In this paper we modify the differential evolution technique by introducing archive-

based mutation strategy with selective pressure to boost exploration capabilities of 

the algorithm. To test the algorithm, we used four global trajectory optimization 

problems, provided by the European Space Agency (ESA) [3]. 

The rest of the paper is organized as follows: in section 2 we briefly describe 

the differential evolution technique used, as well as modifications made, section 3 

contains GTOP definition and description. The experimental results and discussion is 

provided in section 4. Finally, section 5 provides the conclusions. 

 

 

2. DIFFERENTIAL EVOLUTION AND ARCHIVE-BASED MUTATION 

 

Differential evolution (DE) is a popular evolutionary optimization method 

proposed by Storn and Price in [4]. Due to its simplicity in implementation, high 

efficiency and only a few tunable parameters, DE has found various applications in 

many real-world problems [5]. 

 

2.1. Basic algorithm description 

 

DE is a population based method, i.e. when considering the optimization 

problem 

( ) minF 
x

x  

where F(x) is the optimized function, x = x1…xD is the vector of D optimized 

variables. The DE starts with a population of N vectors, represented as xi,j, where i = 

1…N, j = 1…D. At the initialization phase, all points are set to random values in the 

according search range 

, , , ,(0,1) ( )i j lb j ub j lb jx x rand x x     

where xub,j and xlb,j are upper and lower boundaries for variable j. 

The main DE cycle contains application of mutation, crossover and selection 

steps to the population of N solutions for G generations. The mutation operator is the 

main DE search operator; the classical DE mutation is called DE/rand/1: 

, 1, 2, 3,( )i j r j r j r jv x F x x     

where r1, r2 and r3 are mutually exclusive random indexes from [1, N], F is the 

scaling factor, and vi,j is the mutant vector. The mutation operator makes use of the 
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distance between random population vectors to generate new data points. Note that 

r1, r2 and r3 are generated only once for every mutant vector generation, not for 

every vector component j. 

The next step is crossover, which combines the genetic information of two 

vectors to generate the trial vector. The crossover operation is performed with 

probability Cr. In addition, the jrand index is introduced, which is set as rand(1,D) to 

make sure that at least one variable from the mutant vector is present in the trial 

vector: 

,

,

,

, (0,1)

,

i j

i j

i j

v rand Cr or j jrand
t

x otherwise

 
 


 

The last step is the selection: if the trial vector’s fitness value F(ti,j) is lower than 

the one of the i-th individual in the population F(xi,j), then this individual is replaced. 

 

2.2. Control parameters adaptation and modifications 

 

The two main parameters of DE are the scaling factor F and crossover rate Cr. 

They influence the convergence speed and thus tuning them accordingly allows 

balancing the exploration and exploitation capabilities. 

There are many various DE parameter adaptation techniques existing in the 

literature, including jDE [6], JADE [7], SaDE [8], SHADE [9] and many others, 

which differ in their basic ideas and effect. In this paper we will adapt the tuning 

method used for SHADE algorithm, namely the Success History based Adaptation 

with 5 memory cells containing promising F and Cr couples, which are updated by 

weighted Lehmer mean procedure. The successful F and Cr values for updating are 

recorded after every improvement of the fitness function. The initial values for F and 

Cr are set to 0.5, and new F values are generated by Cachy distribution with scale 

parameter equal to 0.1, while new Cr values are generated by Normal distribution 

with standard deviation of 0.1, as proposed in [9]. 

The mutation strategy for solving GTOP problems was modified to enhance the 

exploration capabilities of the algorithm by adding the archive set. The archive set 

was used in the SHADE algorithm in the current-to-pbest/1 mutation strategy, 

however, here we modify the rand/1 strategy so that 

, 1, 2, 3,( )i j r j ra j ra jv x F x x     

where r1 is the random index in [1, N], while ra2 and ra2 are random indexes 

drawn from [1,N+NA], where NA is the archive set. The archive set is filled by 

potentially good solutions: every time a vector is updated by selection procedure, the 

individual, that is replaces by the trial vector, is copied to the archive of size NA. 

Initially, the archive is empty, and it keeps growing as the algorithm proceeds. When 

the archive is full, the new inserted vector replaces random old vector in the archive. 
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In addition to this, the indexes ra2 and ra3 are selected in accordance to the 

rank-based selection procedure. More precisely, the ranks are assigned to the total set 

of N individuals and NA archive vectors based on their fitness values, where better 

fitness gets larger rank 

( ) 1, 1...iRank N NA i i N NA       

1

i
i N NA

i

i

Rank
pr

Rank







  

The ra2 and ra3 are then generated using discrete distribution, where the 

probability pri of a vector to be chosen is proportional to its rank. 

 

 

3. SPACECRAFT GLOBAL TRAJECTORY OPTIMIZATION 

 

The trajectory optimization problems are very difficult to solve due to the fact 

that function calculation involves the computation of a complex dynamical system. 

Usually, such problems are formulated so that the objective function value to be 

optimized is the amount of propellant, needed to achieve the desired goal. While the 

optimized values are usually planet visiting times, however, the trajectories, obtained 

by this method are usually not very good. A more complicated method is to allow 

deep space maneuvers (DSM), which gives the opportunity to get better trajectories, 

but complicates the problem: the number of local minima increases, as well as the 

search space sensitivity. Various methods were proposed, and DE appeared to be 

quite promising in solving this class of problems [10]. 

Here we will consider four GTO problems provided by ESA, namely Cassini-1, 

Cassini-2, Rosetta and Messenger. Each of these problems are available [11] to 

optimize the flight trajectories of well-known missions. 

First of all, Cassini-1 and Cassini-2 are two variants of the Cassini spacecraft 

mission to reach Saturn, the difference is that Cassini-2 allows DSM, and the goal is 

to fly-by Saturn, while Cassini-1 goal is to reach its orbit. The Cassini-1 6 parameters 

are presented in Table 1. 
Table 1. 

Variable Lower bound Upper bound Units 

t0 -1000 0 MJD2000 

T1 30 400 days 

T2 100 470 days 

T3 30 400 days 

T4 400 2000 days 

T5 1000 6000 days 
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The Rosetta mission’s goal is to reach 67P/Churyumov–Gerasimenko comet 

and explore it, sending the Philae module. Both Cassini-2 and Rosetta have 22 

parameters due to DSM allowed. 

The Messenger mission’s goal is to reach Mercury orbit and stay on it. The 

problem definition has 18 parameters. Same as for other problems, the optimization 

goal is to minimize the amount of propellant required. 

 

 

4. EXPERIMENTAL RESULTS 

 

The program system used for testing was written using the C++ language and 

ran on Ubuntu 16.04 LTS. For every problem tested, 25 runs of the algorithm have 

been performed. For all tests, the population size was set to 5000, and the total 

computational resource was set to D∙106. For Messenger GTOP, the computational 

resource was set to 5∙D∙106. 

The best found solution for Cassini-1 problems, as well as known alternative 

solution is presented in Table 2. 

 
Table 2. 

Variable 
Best found solution 

(this study) 

Manfred Stickel, Max-

Planck-Institut fuer 

Astronomie (PSO) [12] 

Difference 

t0 -789.77 -789.81 0,04 

T1 158.317 158.302 0,015 

T2 449.386 449.386 0 

T3 54.7115 54.7489 0,0374 

T4 1024.74 1024.36 0,38 

T5 4552.89 4552.30 0,59 

DeltaV 4.93071 4.9307 0.00001 

 

As can be seen from the table, the solution found by the modified DE is almost 

the same as the known solution for this problem. 

For Cassini-2 problem, the best goal function value was 8.382940, while other 

solutions are 8.383091 (G. Danoy, B. Dorronsoro, P. Bouvry, University of 

Luxemburg), and 8.383184 (M. Schlueter, J. Fiala, M. Gerdts, University of 

Glasgow, University of Birmingham) [12]. So, the modified DE was capable of 

finding the best known solution to this problem up to date, although the difference is 

not large. The goal function values close to 8.383 were obtained in 4 runs out of 25, 

i.e. 12%. 

For Rosetta problem, the best goal function value was 1.343, while other 

solutions are 1.343 (M. Vasile, E. Minisci, University of Glasgow), and 1.344 (B. 

Addis, A. Cassioli, M. Locatelli, F. Schoen, Global Optimization Laboratory, 
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University of Florence) [12]. Moreover, this solution was found in 40% of the cases, 

i.e. this problem was relatively simple to solve for modified DE. 

The Messenger GTOP appeared to be most complicated, and for this problem 

only suboptimal solution was found, with goal function value of 8.652. Other studies 

reported 8.630 (F. Biscani, M. Rucinski and D.Izzo, European Space Agency) and 

8.631 (B. Addis, A. Cassioli, M. Locatelli, F. Schoen , Global Optimization 

Laboratory, University of Florence and University of Turin), while the third result is 

only 8.703 (T., Vinko, D., Izzo, European Space Agency) [12]. 

Considering the results, obtained by modified differential evolution algorithm, 

we may say that it can be successfully used to solve this class of global trajectory 

optimization problems, and achieve the goal in a limited time. The time required to 

perform one run of the algorithm is: for Cassini-1: 5 minutes, Cassini-2: 10 minutes, 

Rosetta: 10 minutes, Messenger: 60 minutes. For comparison, to get the same result 

on Cassini-2, the Mixed Integer Distributed Ant Colony Optimization (MIDACO) 

solver required 50 days of search, and Hybrid Hierarchical cellular Genetic 

Algorithm (HH-cGA) required 42 hours [13]. 

 

 

5. CONCLUSION 

 

In this paper we have proposed a modification of the differential evolution 

algorithm for solving the global trajectory optimization problems for several 

spacecraft. For three out of four problems, optimal solutions were found, while for 

the Messenger problem, only suboptimal solution was discovered. This is probably 

due to the limited computational resource or algorithm settings. However, for 

Cassini-2 problem, the best known up-to-date solution was found in a relatively 

small time. 

Thus, we may conclude that the differential evolution with modified archive-

based mutation strategy with selective pressure is an efficient optimization method, 

applicable to solving various real-world optimization problems. 
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