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The topic of the study

is the research on the coordination of many robotic systems. This
is largely due to many practical applications such as

e urban search and rescue [1],
e surveillance and intelligence [2],

e environmental monitoring [3],

e and mapping of unknown environments [4].




Main goal

Generally, the problem with the formation of many robotic
systems involves two steps:

o first determining the desired formation, which is beyond the scope
of this study

@ and on the second hand designing the appropriate control
algorithm to reach and maintain this formation.
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Reinforcement Learning

In general, the reinforcement learning process used is a cycle that
begins with the observation of a given state s;, selects an action ay,
waits for the action to complete, observes the received state s¢,1, and
accordingly updates the evaluation of its value function and the next
cycle begins.

Since updating the value estimate of a feature is the most often
expected intensive step, we have introduced the idea of an update
buffer. It caches the observations of s;,; and the reward and delays the
evaluation of the value function until the next time the robot waits for
the action of its choice.




-
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Recurrent Neural Networks for Optimization Problemgk

The key moment for building an optimal formation is to effectively
solve the optimization problem. Unlike conventional numerical
methods, the efficiency of recurrent neural network does not decrease
as the size of the optimization problem [7] [8], [11].

One common assumption of the aforementioned neural networks is that
the optimization problem is smooth.In [13], a generalized neural
network based on the model proposed in [12] was presented for
non-smooth problems with nonlinear programming. Extensions of the
non-smooth convex optimization problem are made in [14].




L.orenz attractor

Numerical methods are often used to analyze the structure of the
attractor

e For example, a combination of an explicit Euler method with a
central difference scheme.

@ Other methods are the Adams method using higher derivatives

e Runge-Kutta methods

The equilibrium positions of the system are of saddle type. As a
sequence this limits the use of these methods. Becouse small changes in
the initial conditions of the system lead to significant consequences
over time.




Recurrent Neural Ntetworks

Basic RNNs are a network of neuron-like nodes organized into
successive "layers”, each node in a given layer is connected with a
directed (one-way) connection to every other node in the next
successive layer.

Each node (neuron) has a time-varying real-valued activation. Each
connection (synapse) has a modifiable real-valued weight. Nodes are
either input nodes (receiving data from outside the network), output
nodes (yielding results), or hidden nodes (that modify the data en
route from input to output).




Long Short Trem Memory

There are several architectures of LSTM units. A common architecture
is composed of a memory cell, an input gate, an output gate and a
forget gate. This is equivalent to applying the identity functioni

f(z) = x to the input.

Because the derivative of the identity function is constant, when an
LSTM network is trained with backpropagation through time, the
gradient does not vanish. The activation function of the LSTM gates is
often the logistic function. There are connections into and out of the
LSTM gates, a few of which are recurrent. The weights of these
connections, which need to be learned during training, determine how
the gates operate.




LSTM with a forget gate

In the equations below, the lowercase variables represent vectors.
Matrices W, and U, contain, respectively, the weights of the input and
recurrent connections, where ¢ can either be the input gate 7, output
gate o, the forget gate f or the memory cell ¢ ¢, depending on the
activation being calculated. The compact forms of the equations for
the forward pass of an LSTM unit with a forget gate are:

ft =04(Wyxy + Uphi—1 + by)

it = 0g(Wizy + Ushi—1 + b;)

ot = 0q(Woxt + Uohi—1 + bo)

ct = froci—1 + it 0o oc(Wexy + Uchy—1 + be)




LSTM with a forget gate

The initial values are cyg = 0 and hg = 0 and the operator o denotes the
Hadamard product (element-wise product). The subscript ¢ indexes
the time step.

z; € R? is input vector to the LSTM unit;
f; € R" is forget gate’s activation vector;

ir € R" is input gate’s activation vector;

o; € R" is output gate’s activation vector;
h: € R" is output vector of the LSTM unit:;

c; € R" is cell state vector;

W e R4 U e R™" and b € R" are weight matrices and bias vector




Peephole LSTM

The figure on the right is a graphical representation of an LSTM unit
with peephole connections (i.e. a peephole LSTM). Peephole
connections allow the gates to access the constant error carousel
(CEC), whose activation is the cell state. h;_; is not used, ¢;_; is used
instead in most places.

f# = Ug(Vszlft + Usci—1 + by)

it = 0g(Wize + Uic—1 + b;)

op = Gg(Woxt + Usti—1 4 bs)

ct = froci—1 + it 0 oe(Wewy + Uecr—1 + be)

hy = o4 o Ulz.(ct)
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Experiments

We have a group of robots moving together in formation. The
formation is led by a leader, with the rest of the robots orienting
themselves to their position in the leader formation. The problem of
the leader’s dismissal is solved by taking his place from another robot.
All robots have an arrangement to take the leader position.

We have N robots and N positions that the robots have to position
themselves. When we have heterogeneous robots, (ie, each robot has a
specific position), the solution to the problem is trivial.




Results

Comparison of Naive Approach and the Deep Learning
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Results

The results showed that Deep Learning approach performs better naive
approach.

Examines impact of training data set size on the accuracy of prediction
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Figure: impact of training data set size on the accuracy of prediction




Results

Both experiments take five runs and the Winzorized mean is calculated.

For a larger number of robots in certain formation configurations, the
last occupied position can be expected to be occupied much later than
others. To avoid this situation, the robots should distribute their
positions so that the total path to occupying these positions is minimal.
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Conclusion

In this work, we propose a method for applying the training
algorithm to assist the formation of groups of agents in a leader
scenario.

Mobile agent formation control is an important issue for the collective
of robots. Especially when they move independently without human
oversight, controlling the movement and forming a collective of agents
is a critical and challenging task.

To exercise control through supportive learning, we present the
problem of formation as a Markov decision-making process. This
allows us to use deep reinforcement learning to obtain the law of
leadership of the successor leader.
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