2020 IEEE International Conference on Information Technologies (InfoTech-2020 34th issue)

POWER SUBSTATIONS RELIABILITY EVALUATION USING FUZZY SET

Natasha Dimishkovska, Atanas Iliev

Ss. Cyril and Methodius University in Skopje

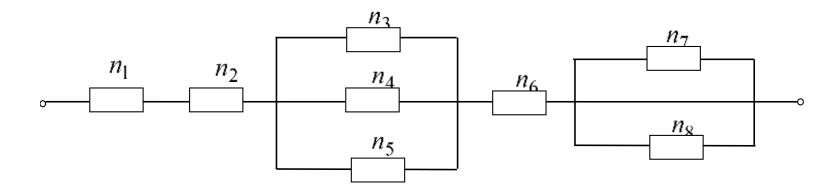
Faculty of Electrical Engineering and Information Technologies

INTRODUCTION

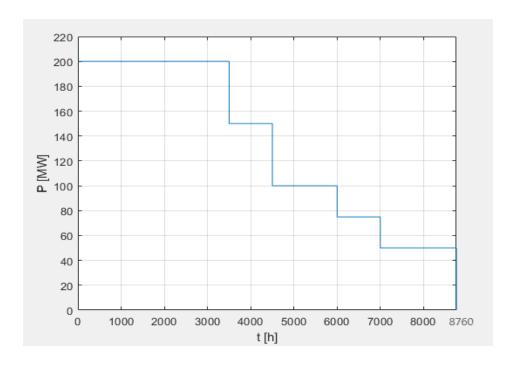
- The estimation of the reliability parameters of the components in the power substations contains a high level of insecurity and uncertainty, which are still given statistical character.
- It is more appropriate to assume that the unavailability of the components and the uncertainty belongs to a certain range
- The development of the fuzzy logics offers effective procedures and techniques that can include the imprecise and unavailability of the input data.

PROBLEM DEFINITION

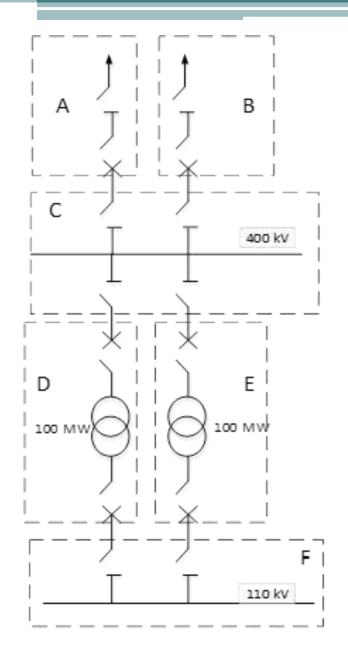
- In this paper, the fuzzy logic theory is used for estimation of the reliability of power substations, considering the reliability of the power lines.
- The substation is divided into blocks, and each of the blocks has a certain impact on the substation's reliability.


PROBLEM DEFINITION

- This method, offers a wider range of scenario analysis that can cause the failure of the power substation.
- The main characteristic is that all input and output data are also fuzzy numbers, defined with proper membership function.



PROBLEM DEFINITION


- The components in the substations are grouped to form a functional whole with precisely defined function in normal operational condition.
- The experiences have shown that substations have high reliability rate, which depending on the components and the voltage rate, varies between 10⁻⁴ and 10⁻⁶.

TEST EXAMPLE

Load duration curve of the analysed test example substation

TEST EXAMPLE

- The unavailability of each of the components depends on the voltage level and is defined with a triangular fuzzy number
- The equivalent unavailability of the whole system is calculated with a combination of the expressions for series and parallel connected components.
- Considering the calculated unavailability rates and the load duration curve, the annual Energy Not Supplied (ENS) is calculated

TEST EXAMPLE- Energy Not Supplied

No.	A	В	C	D	Е	F	Probability of occurrence	Power [MW]	ENS [MWh/year]
1	1	1	1	1	1	1	/	0	0
2	0	1	1	1	1	1	$[2.08; 2.35; 2.86] \cdot 10^{-5}$	100	[9.36; 10.58; 12.87]
3	1	0	1	1	1	1	$[2.08; 2.35; 2.86] \cdot 10^{-5}$	100	[9.36; 10.58; 12.87]
4	1	1	0	1	1	1	$[1.70; 1.78; 1.85] \cdot 10^{-5}$	200	[29.78; 31.24; 32.46]
5	1	1	1	0	1	1	$[5.36; 5.58; 5.84] \cdot 10^{-4}$	100	[241.23; 250.99; 262.43]
6	1	1	1	1	0	1	$[5.36; 5.58; 5.84] \cdot 10^{-4}$	100	[241.23; 250.99; 262.43]
7	1	1	1	1	1	0	$[1.05; 1.10; 1.15] \cdot 10^{-5}$	200	[18.43; 19.27; 20.20]
8	0	0	0	0	0	0	$[2.78 2.91 3.04] \cdot 10^{-5}$	200	[48.72; 51.06; 53.26]
							Total:		[598.62 625.26 657.47]

CONCLUSION

- The method presented is an upgrade of an excising method it shows that it is applicable for more complex substations.
- The results are characterized by a low percentage of error, which makes the method applicable to engineering calculations in the designing process.
- Also, the results provide a wider range of probabilities of failure, which can be analysed as case scenarios that cause power supply interruptions.

