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1.1. Motivation
• The optimization problem AC Security Constrained Short-term Hydrothermal Scheduling (SCSHTS) is 

relatively different from OPF because TPPs and HPPs are included in the power system.
• Obtaining optimal solution is not easy, because the objective function of SCSHTS has a non-convex  MIP 

nature and AC constraints have a strong correlation.
• The classical optimization methods cannot be applied to the SCSHTS optimization problem

1.2. Contributions
• A compact formulation for SCSHTS problem, including all, thermal, hydro, system (AC power flow) and

security constraints.
• New self-adaptive penalty which requires no parameter tuning.
• New constraint handling repair mechanism for consideration the hardest constraints, especially hydro,

generator reactive, generator voltage, and bus voltage constraint, to get a significantly more realistic solution.
• A new stochastic crossover approach based on generating random number, and consequently selecting the

crossover type.
• A new mutation operator, to maintain population diversity and avoid local optimum

1. Introduction



subject to the constraints:
• TPP constraints: generator constraint, generator voltage constraint, ramp rate constraint, available production

constraint.
• HPP constraints: generator constraint, generator voltage constraint, water discharge constraint, reservoir

storage, volume constraint, initial and final reservoir storage constraint, water dynamic balance constraint,
available production constraint.

• Power system security constraints: AC power flow balance constraint, transmission line constraint, spinning
reserve constraint, bus voltage constraint, shunt reactive power constraint.

• Control, state and dependent variables (voltage calculation by the Newton-Raphson method):
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2. Problem formulation
• The main objective of SCSHTS problem is to minimize the total fuel cost of thermal power plants  (TPP) over 

the optimization period. The objective function to be minimized can be represented as:



3. Block diagram of the proposed algorithm and test
system results

CCSA MCSA ENCSA SAGA Change
(%)

FTbest (€) 13722.208 13718.230 13655.538 12491.603 9.318

FTmean (€) 13759.815 13783.937 13808.732 12588.712 9.691

FTworst (€) 13815.143 14066.094 14548.909 12673.007 14.802

St. dev. (€) 16.895 53.707 171.314 50.523 239.081

CPU time (s) 67.036 65.695 65.871 53.221 23.769

Success rate
(%) 76 91 98 98 /



• After performance verification of the proposed algorithm, the same has been applied on IEEE 30 BUS
SYSTEM, considering all previously defined constraints.

• The main parameters are shown as the following: gen = 300; pop = 100; elite = 10; sim = 50;

4. Computational results
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(m3/h)

Q2
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1 94.80 25.55 15.00 12.04 10.00 12.00 4.83 0.01 13.76 143.33 235.91
2 115.88 35.86 0.00 16.81 10.97 22.07 13.96 0.70 22.07 151.84 413.85
3 129.35 48.38 15.00 23.67 19.17 0.00 8.84 3.00 28.23 224.40 0.00
4 130.07 57.91 25.50 26.79 0.00 34.47 18.55 0.79 31.42 0.00 635.70
5 130.70 51.01 30.05 26.64 18.81 33.71 18.10 3.87 30.89 221.21 622.05
6 126.98 47.42 31.39 24.35 18.15 30.62 13.06 2.47 28.41 215.33 566.52
7 128.96 52.12 25.40 26.68 19.57 0.00 5.36 2.22 29.52 228.01 0.00
8 116.29 38.44 15.00 17.29 10.34 21.10 4.13 1.60 21.75 146.31 396.61
9 119.90 42.72 0.00 17.92 17.20 0.00 13.53 3.44 24.19 206.94 0.00
10 99.64 27.58 15.00 12.28 10.00 0.00 18.78 0.57 15.47 143.33 0.00
11 91.40 20.54 16.03 11.84 10.00 0.00 12.24 2.77 12.53 143.33 0.00
12 93.11 24.64 15.53 12.13 0.00 17.87 1.72 3.67 13.28 0.00 339.33
13 104.12 29.33 17.14 12.82 10.45 0.00 7.01 3.56 16.51 147.25 0.00
14 103.03 33.26 19.93 13.26 0.00 19.75 9.74 0.50 17.03 0.00 372.60
15 113.20 34.66 21.13 13.97 10.00 20.00 16.99 2.99 20.13 143.33 377.11
16 119.22 39.24 25.25 16.56 13.03 24.40 13.24 0.90 22.96 169.99 455.30
17 138.03 41.80 27.19 18.68 15.33 12.00 14.49 0.39 28.93 190.38 235.91
18 120.11 43.61 22.13 21.41 14.15 25.77 3.05 1.23 24.95 179.88 479.70
19 118.83 50.20 15.00 22.32 12.22 23.71 9.58 4.13 25.32 162.88 442.99
20 145.52 59.91 0.00 28.04 0.00 0.00 13.70 3.23 35.74 0.00 0.00
21 110.35 38.50 15.00 16.61 10.00 18.57 8.23 0.97 20.13 143.33 351.74
22 102.69 32.82 16.79 13.96 0.00 19.95 5.23 2.38 16.91 0.00 376.28
23 93.54 20.00 15.00 10.00 10.00 15.61 4.86 3.43 12.82 143.33 299.48
24 86.66 20.00 15.00 0.00 0.00 12.00 4.92 0.52 10.86 0.00 235.91

Optimal solution by proposed algorithm



i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988
2 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988
3 0.979 0.979 0.971 0.968 0.968 0.968 0.967 0.973 0.978 0.981 0.981 0.980 0.978 0.979 0.976 0.973 0.968 0.969 0.973 0.967 0.974 0.979 0.980 0.981
4 0.976 0.976 0.966 0.963 0.963 0.963 0.961 0.969 0.975 0.978 0.978 0.977 0.975 0.976 0.972 0.969 0.963 0.964 0.968 0.961 0.970 0.976 0.977 0.979
5 0.988 0.988 0.978 0.968 0.968 0.968 0.978 0.978 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.978 0.978 0.978 0.978 0.968 0.988 0.988 0.988 0.988
6 0.981 0.981 0.971 0.964 0.965 0.964 0.964 0.972 0.981 0.984 0.984 0.981 0.981 0.981 0.976 0.972 0.966 0.965 0.972 0.964 0.974 0.981 0.982 0.983
7 0.980 0.979 0.968 0.958 0.958 0.958 0.963 0.969 0.979 0.981 0.982 0.980 0.979 0.979 0.975 0.968 0.963 0.964 0.968 0.959 0.974 0.979 0.980 0.982
8 0.988 0.988 0.978 0.968 0.968 0.968 0.968 0.978 0.988 0.988 0.988 0.988 0.988 0.988 0.978 0.978 0.968 0.968 0.978 0.968 0.978 0.988 0.988 0.988
9 0.992 0.994 0.984 0.980 0.980 0.978 0.977 0.982 0.996 1.006 1.000 0.992 0.994 0.992 0.992 0.985 0.981 0.976 0.984 0.983 0.986 0.991 0.994 0.996

10 0.989 0.993 0.979 0.973 0.974 0.970 0.968 0.974 0.997 1.010 1.005 0.987 0.994 0.989 0.993 0.980 0.976 0.964 0.978 0.979 0.980 0.986 0.992 0.996
11 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.998 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988
12 1.003 1.004 0.988 0.988 0.987 0.986 0.983 0.991 1.002 1.013 1.012 1.005 1.003 1.003 1.002 0.992 0.987 0.986 0.992 0.988 0.993 1.003 1.005 1.012
13 0.998 0.998 0.988 0.988 0.988 0.988 0.988 0.988 0.998 1.008 1.008 0.998 0.998 0.998 0.998 0.988 0.988 0.988 0.988 0.988 0.988 0.998 0.998 1.008
14 0.993 0.993 0.976 0.973 0.972 0.971 0.968 0.979 0.992 1.004 1.004 0.995 0.994 0.993 0.991 0.979 0.973 0.971 0.979 0.976 0.982 0.993 0.996 1.004
15 0.989 0.989 0.973 0.967 0.966 0.965 0.964 0.974 0.990 1.002 1.002 0.991 0.991 0.989 0.987 0.974 0.969 0.966 0.974 0.972 0.978 0.988 0.993 1.001
16 0.992 0.994 0.978 0.974 0.974 0.972 0.970 0.978 0.995 1.007 1.005 0.993 0.994 0.992 0.992 0.980 0.976 0.970 0.979 0.978 0.982 0.991 0.995 1.002
17 0.986 0.989 0.974 0.968 0.968 0.965 0.964 0.971 0.993 1.006 1.002 0.986 0.991 0.986 0.989 0.975 0.971 0.961 0.973 0.974 0.977 0.984 0.990 0.995
18 0.982 0.982 0.965 0.957 0.956 0.954 0.954 0.964 0.984 0.998 0.997 0.983 0.984 0.980 0.980 0.966 0.960 0.954 0.965 0.964 0.969 0.979 0.985 0.993
19 0.979 0.980 0.962 0.954 0.953 0.951 0.951 0.961 0.983 0.997 0.995 0.980 0.982 0.978 0.978 0.963 0.958 0.950 0.962 0.962 0.967 0.976 0.983 0.990
20 0.981 0.982 0.966 0.958 0.958 0.955 0.955 0.964 0.986 1.000 0.997 0.981 0.985 0.980 0.981 0.967 0.962 0.953 0.965 0.966 0.970 0.978 0.985 0.991
21 0.981 0.984 0.969 0.960 0.962 0.958 0.957 0.965 0.989 1.003 0.999 0.982 0.987 0.981 0.984 0.969 0.964 0.953 0.968 0.969 0.971 0.979 0.986 0.991
22 0.982 0.985 0.970 0.961 0.962 0.958 0.958 0.965 0.990 1.003 0.999 0.982 0.988 0.981 0.984 0.970 0.965 0.954 0.969 0.970 0.972 0.980 0.987 0.991
23 0.982 0.981 0.965 0.955 0.956 0.954 0.955 0.965 0.985 0.997 0.997 0.985 0.986 0.980 0.980 0.965 0.958 0.954 0.966 0.965 0.969 0.981 0.987 0.994
24 0.977 0.977 0.962 0.948 0.952 0.948 0.949 0.959 0.984 0.994 0.996 0.982 0.985 0.975 0.977 0.960 0.953 0.946 0.963 0.962 0.964 0.977 0.985 0.989
25 0.984 0.982 0.968 0.953 0.954 0.952 0.956 0.967 0.988 0.997 0.998 0.988 0.990 0.982 0.979 0.966 0.958 0.953 0.967 0.966 0.971 0.983 0.990 0.994
26 0.973 0.969 0.953 0.935 0.935 0.934 0.939 0.953 0.975 0.987 0.989 0.978 0.979 0.970 0.966 0.950 0.941 0.937 0.952 0.951 0.958 0.971 0.979 0.986
27 0.994 0.991 0.979 0.965 0.964 0.964 0.968 0.978 0.996 1.003 1.005 0.997 0.998 0.992 0.987 0.977 0.969 0.966 0.978 0.975 0.981 0.993 0.998 1.002
28 0.983 0.982 0.971 0.962 0.963 0.963 0.963 0.972 0.982 0.985 0.985 0.983 0.983 0.982 0.976 0.972 0.964 0.964 0.972 0.964 0.974 0.982 0.984 0.985
29 0.982 0.978 0.962 0.945 0.943 0.943 0.950 0.962 0.982 0.992 0.994 0.986 0.986 0.979 0.972 0.960 0.951 0.948 0.961 0.959 0.967 0.980 0.986 0.992
30 0.975 0.969 0.953 0.933 0.931 0.931 0.939 0.953 0.975 0.986 0.989 0.979 0.979 0.971 0.964 0.950 0.940 0.937 0.951 0.949 0.958 0.972 0.980 0.987

Optimal bus voltages by proposed algorithm



• From Table 2, the effectiveness of the proposed SAGA can be seen. SAGA gives the lowest total fuel costs, i.e.,
12491.603 €, compared to the ENCSA whose total fuel costs are 13655.538 €. In other words, the total fuel costs
obtained with SAGA are by 1163.935 € lower compared to ENCSA, which in relative terms implies an improvement
of 9.318%.

• SAGA shows its superiority in dealing with constraints, whereas compared to ENCSA it maintains the same successful rate of
98%, but compared to other CCSA and MCSA, it is higher by 22% and 7%, respectively. On the other hand, FTmean obtained
by SAGA from the successful simulations has the lowest value compared to other metaheuristic methods.

• This is due to the newly proposed constraints handling approach, the newly proposed stochastic approach for the crossover
operator, as well as the adaptive crossover and mutation strategies, which increase the crossover and mutation probability,
only on those chromosomes whose fitness function is significantly different from the mean fitness function of the entire
population.

5. Conclusion
• SCSHTS is an important task in the operation and planning of modern power systems. In this paper, a novel GA-based

algorithm has been proposed and successfully applied to solve AC constrained short-term hydrothermal scheduling problem.
To verify the efficiency of the proposed algorithm, it is first applied to the benchmark version of the IEEE 30 BUS test
system, and then to the classic IEEE 30 BUS test system, considering all predefined constraints.

• The results obtained by the proposed method have been compared with other evolutionary algorithms like CCSA, MCSA,
and ENCSA. It is found that the proposed SAGA can produce better results in terms of cost and computation time. The results
show that the proposed GA-based algorithm is indeed capable of obtaining good quality solution efficiently in case of short-
term hydrothermal scheduling problems, considering AC power flow model to obtain realistic solution.
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