
Methods and Algorithms for Cross-Language

Search of Source Code Fragments

Artyom V. Gorchakov, Liliya A. Demidova

Corporate Information Systems Department, Institute of Information

Technologies, Federal State Budget Educational Institution of Higher

Education “MIREA—Russian Technological University”

Moscow, Russia

InfoTech-2024

2024 International Scientific Conférence on Information Technologies

Section: Information Technologies

Relevance of the Study: Modern Software Systems for

Heterogeneous Computing Platforms

Modern software systems are typically

deployed on heterogeneous

computing platforms, a

heterogeneous computing platform

consists of several computing units

(CPU, GPU, FPGA, ASIC, …) that differ

significantly in their characteristics or

their types.

Components of modern software

systems are typically implemented in

many different programming

languages, including: general-purpose

languages such as Python, Java, C#,

F#; system programming languages

such as C, C++, and Rust; domain-

specific languages (DSLs), such as

structured query language (SQL) and

embedded DSLs for high-level hardware

synthesis.

2

Relevance of the Study: Static Analysis of

Software Components

Static analyzers are widely used for

scanning code for security issues, bugs,

violations of programming standards,

and other defects without executing the

code.

Research in intelligent data analysis,

machine learning, numerical modelling,

and cryptography lead to the

widespread incorporation of code

fragments implementing

computationally intensive algorithms

into modern software systems.

Computationally expensive programs

can be accelerated by moving their

fragments to most suitable

coprocessors among the computing

units that are available on a given

heterogeneous computing platform.

3

def main(x):
y = 1
while x > 1:

y *= x
x -= 1

return y

An example of a Python program and an Abstract Syntax

Tree (AST)-based program representation which is

commonly used for static code analysis:

Most existing static source code analyzers are rule-based,

designed for a given programming language. In this

research we describe a Unified Abstract Syntax Tree

(UAST) program model, and implement a decision support

system which allows making recommendations for code

acceleration on a given heterogeneous computing

platform based on a code-to-code search algorithm and a

database of code examples.

Overview of the Proposed Approach to Cross-Language

Code Fragment Search: The General Approach

On the first step of the proposed

approach the analyzed program is

transformed into UAST.

The UAST can be built in different ways,

for example, a language-dependent AST

can be constructed, and then the AST

can be mapped to UAST.

The supported syntactic structures in

the proposed UAST model are very

limited, it is expected that a language-

specific AST is desugared before

converting it into UAST.

If the converter encounters an AST node

that can be neither desugared nor

mapped into any of the known UAST

nodes, then such AST node is ignored,

in a way that is similar to micro-

grammars.

4

Overview of the Proposed Approach to Cross-Language

Code Fragment Search: UAST Example

In order to illustrate the proposed UAST construction

process, the figure lists 2 programs computing

factorial, the programs are written in Python,

denoted as (a), and in C, denoted as (b).

The UAST obtained from the C program is denoted

as (c). The UAST obtained from the Python program

is mostly the same, with a single exception for line

and column numbers.

5

The UAST-based code models are scanned

according to Algorithm 1, which extracts

fragments from the analyzed UAST and

compares the fragments to the UAST of the

query program, returning top κ most similar

fragments treated can be treated as

recommendations for acceleration.

Overview of the Proposed Approach to Cross-Language

Code Fragment Search: Program Representations

6

In this research, we use the Markov

chain-based and Jensen-Shannon

Divergence-based distance function.

The UASTs of the compared

programs are augmented with edges

from the “definition-use” graphs

connecting UAST nodes that define

variables with nodes that use the

defined variables.

The UAST code representation

augmented with DU-graph edges is

denoted as (a). The Markov chain

graph for the UAST is denoted as (b).

Weighted adjacency matrices of the

Markov chains are converted into

vectors by concatenating the rows.

(a)

(b)

Overview of the Proposed Approach to Cross-Language

Code Fragment Search: Distance Function

7

The vector-based representations of 2 programs are then compared to each other according to:

 𝜌 = 𝜔1𝜌1 + 𝜔2𝜌2 + 𝜔3𝜌3,

where

 𝜌1 = JSD Ԧ𝑣1
UAST, Ԧ𝑣2

UAST ,

 𝜌2 = JSD Ԧ𝑣1
DU, Ԧ𝑣2

DU ,

 𝜌3 = 1 −
min 𝑐1,𝑐2

max 𝑐1,𝑐2
,

JSD Ԧ𝑣, Ԧ𝑣′ = σ𝑖=1
𝑚 𝑣𝑖

2
log2

2𝑣𝑖

𝑣𝑖+𝑣𝑖
′ + σ𝑖=1

𝑚 𝑣𝑖
′

2
log2

2𝑣𝑖
′

𝑣𝑖+𝑣𝑖
′,

𝜔1, 𝜔2, 𝜔3 are weights;

JSD denotes the Jensen-Shannon divergence for program vectors Ԧ𝑣 and Ԧ𝑣′;
𝑚 is the component count in program vectors Ԧ𝑣 and Ԧ𝑣′;

Ԧ𝑣1
UAST and Ԧ𝑣2

UAST denote Markov chain-based code vectors based built for UASTs (black edges);

Ԧ𝑣1
DU and Ԧ𝑣2

DU denote Markov chain-based code vectors built for DU-graphs (blue edges);

𝑐1 and 𝑐2 denote Cyclomatic Complexity values of the programs.

8

Experiment: Comparison of Markov Chain-Based Distance

with the Well-Known Tree Edit Distance

We compared the Markov chain-based

and Jensen-Shannon Divergence-based

distance function with tree edit

distance, which is commonly used to

determine how the 2 given trees differ

from each other.

The automatically obtained search

results were compared to the code

fragments that were found in code by

an expert using Precision and Recall

metrics:

 Precision =
TP

𝑘
=

TP

TP+FP
,

 Recall =
TP

TP+FN
.

The F1-score of Precision and Recall

was also computed. The obtained

results are shown in Table 1.

The improved quality of the results obtained with the

Markov chain-based distance function are, on the one

hand, justified by the fact, that this distance function

takes data dependencies into account. On the other

hand, Markov chain-based code embeddings are

known to outperform word2vec, code2vec and

histograms in algorithm classification.

9

Experiment: Recommendations

for Software Acceleration

An example of C code fragment search results.

An example of Python code fragment search results.

Using the described UAST-based approach to

cross-language code search, we developed a

plugin for the Visual Studio Code® IDE.

The results of cross-language code-to-code

search based on the database of algorithm

implementations are provided.

The database also contained acceleration

coefficients for SIMD CPU and SIMD GPU-

based code variants. The coefficients were

obtained by benchmarking algorithms from

the database on a heterogeneous computing

platform that we used in our experiment.

Future research could cover additional

comparison of different distance metrics using

such metrics as performance and memory

usage. Future research could also cover control

flow graph-based code models.

	Slide 1
	Slide 2: Relevance of the Study: Modern Software Systems for Heterogeneous Computing Platforms
	Slide 3: Relevance of the Study: Static Analysis of Software Components
	Slide 4: Overview of the Proposed Approach to Cross-Language Code Fragment Search: The General Approach
	Slide 5: Overview of the Proposed Approach to Cross-Language Code Fragment Search: UAST Example
	Slide 6: Overview of the Proposed Approach to Cross-Language Code Fragment Search: Program Representations
	Slide 7: Overview of the Proposed Approach to Cross-Language Code Fragment Search: Distance Function
	Slide 8: Experiment: Comparison of Markov Chain-Based Distance with the Well-Known Tree Edit Distance
	Slide 9: Experiment: Recommendations for Software Acceleration

