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Relevance of the Study: Modern Software Systems for 

Heterogeneous Computing Platforms

Modern software systems are typically 

deployed on heterogeneous 

computing platforms, a 

heterogeneous computing platform 

consists of several computing units 

(CPU, GPU, FPGA, ASIC, …) that differ 

significantly in their characteristics or 

their types.

Components of modern software 

systems are typically implemented in 

many different programming 

languages, including: general-purpose 

languages such as Python, Java, C#, 

F#; system programming languages 

such as C, C++, and Rust; domain-

specific languages (DSLs), such as 

structured query language (SQL) and 

embedded DSLs for high-level hardware 

synthesis. 
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Relevance of the Study: Static Analysis of 

Software Components

Static analyzers are widely used for 

scanning code for security issues, bugs, 

violations of programming standards, 

and other defects without executing the 

code.

Research in intelligent data analysis, 

machine learning, numerical modelling, 

and cryptography lead to the 

widespread incorporation of code 

fragments implementing 

computationally intensive algorithms 

into modern software systems. 

Computationally expensive programs 

can be accelerated by moving their 

fragments to most suitable 

coprocessors among the computing 

units that are available on a given 

heterogeneous computing platform.
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def main(x):
y = 1
while x > 1:

y *= x
x -= 1

return y

An example of a Python program and an Abstract Syntax 

Tree (AST)-based program representation which is 

commonly used for static code analysis:

Most existing static source code analyzers are rule-based, 

designed for a given programming language. In this 

research we describe a Unified Abstract Syntax Tree

(UAST) program model, and implement a decision support 

system which allows making recommendations for code 

acceleration on a given heterogeneous computing 

platform based on a code-to-code search algorithm and a 

database of code examples.



Overview of the Proposed Approach to Cross-Language 

Code Fragment Search: The General Approach

On the first step of the proposed 

approach the analyzed program is 

transformed into UAST.

The UAST can be built in different ways, 

for example, a language-dependent AST 

can be constructed, and then the AST 

can be mapped to UAST.

The supported syntactic structures in 

the proposed UAST model are very 

limited, it is expected that a language-

specific AST is desugared before 

converting it into UAST.

If the converter encounters an AST node 

that can be neither desugared nor 

mapped into any of the known UAST 

nodes, then such AST node is ignored, 

in a way that is similar to micro-

grammars.
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Overview of the Proposed Approach to Cross-Language 

Code Fragment Search: UAST Example

In order to illustrate the proposed UAST construction 

process, the figure lists 2 programs computing 

factorial, the programs are written in Python, 

denoted as (a), and in C, denoted as (b).

The UAST obtained from the C program is denoted 

as (c). The UAST obtained from the Python program 

is mostly the same, with a single exception for line 

and column numbers.
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The UAST-based code models are scanned 

according to Algorithm 1, which extracts 

fragments from the analyzed UAST and 

compares the fragments to the UAST of the 

query program, returning top κ most similar 

fragments treated can be treated as 

recommendations for acceleration.



Overview of the Proposed Approach to Cross-Language 

Code Fragment Search: Program Representations
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In this research, we use the Markov 

chain-based and Jensen-Shannon 

Divergence-based distance function.

The UASTs of the compared 

programs are augmented with edges 

from the “definition-use” graphs 

connecting UAST nodes that define 

variables with nodes that use the 

defined variables.

The UAST code representation 

augmented with DU-graph edges is 

denoted as (a). The Markov chain 

graph for the UAST is denoted as (b).

Weighted adjacency matrices of the 

Markov chains are converted into 

vectors by concatenating the rows.

(a)

(b)



Overview of the Proposed Approach to Cross-Language 

Code Fragment Search: Distance Function
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The vector-based representations of 2 programs are then compared to each other according to:

 𝜌 = 𝜔1𝜌1 + 𝜔2𝜌2 + 𝜔3𝜌3,

where

 𝜌1 = JSD Ԧ𝑣1
UAST, Ԧ𝑣2

UAST ,

 𝜌2 = JSD Ԧ𝑣1
DU, Ԧ𝑣2

DU ,

 𝜌3 = 1 −
min 𝑐1,𝑐2

max 𝑐1,𝑐2
,

JSD Ԧ𝑣, Ԧ𝑣′ = σ𝑖=1
𝑚 𝑣𝑖

2
log2

2𝑣𝑖

𝑣𝑖+𝑣𝑖
′ + σ𝑖=1

𝑚 𝑣𝑖
′

2
log2

2𝑣𝑖
′

𝑣𝑖+𝑣𝑖
′,

𝜔1, 𝜔2, 𝜔3 are weights; 

JSD denotes the Jensen-Shannon divergence for program vectors Ԧ𝑣 and Ԧ𝑣′;
𝑚 is the component count in program vectors Ԧ𝑣 and Ԧ𝑣′;

Ԧ𝑣1
UAST and Ԧ𝑣2

UAST denote Markov chain-based code vectors based built for UASTs (black edges);

Ԧ𝑣1
DU and Ԧ𝑣2

DU denote Markov chain-based code vectors built for DU-graphs (blue edges);

𝑐1 and 𝑐2 denote Cyclomatic Complexity values of the programs.
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Experiment: Comparison of Markov Chain-Based Distance 

with the Well-Known Tree Edit Distance

We compared the Markov chain-based 

and Jensen-Shannon Divergence-based 

distance function with tree edit 

distance, which is commonly used to 

determine how the 2 given trees differ 

from each other.

The automatically obtained search 

results were compared to the code 

fragments that were found in code by 

an expert using Precision and Recall 

metrics:

 Precision =
TP

𝑘
=

TP

TP+FP
,

 Recall =
TP

TP+FN
.

The F1-score of Precision and Recall 

was also computed. The obtained 

results are shown in Table 1.

The improved quality of the results obtained with the 

Markov chain-based distance function are, on the one 

hand, justified by the fact, that this distance function 

takes data dependencies into account. On the other 

hand, Markov chain-based code embeddings are 

known to outperform word2vec, code2vec and 

histograms in algorithm classification.
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Experiment: Recommendations 

for Software Acceleration

An example of C code fragment search results.

An example of Python code fragment search results.

Using the described UAST-based approach to 

cross-language code search, we developed a 

plugin for the Visual Studio Code® IDE.

The results of cross-language code-to-code 

search based on the database of algorithm 

implementations are provided.

The database also contained acceleration 

coefficients for SIMD CPU and SIMD GPU-

based code variants. The coefficients were 

obtained by benchmarking algorithms from 

the database on a heterogeneous computing 

platform that we used in our experiment.

Future research could cover additional 

comparison of different distance metrics using 

such metrics as performance and memory 

usage. Future research could also cover control 

flow graph-based code models.
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