
Architecture of a regular expression translator

with optimization of intermediate states

Department of Corporate Information Systems
MIREA – Russian Technological University

Liliya A. Demidova, Nikita A. Moroshkin

2024 International Scientific Conference on Information
Technologies (InfoTech-2024)

Regular Expressions

Regular expressions are a powerful tool
for searching words in a text corpus by a specific
pattern. Regular expressions are represented
in many programming languages with different
implementations.

Regular expressions are applied in many fields
of text analysis, including social media
monitoring, lexical analysis as a stage of code
compilation, and many others.

^ 8 \ + 7 \ − ? ? \ ? 0 − 9 3 \ ? \ − ? ? 0123456789\ − 7,10 $ (1)

1

Diversity of regular expressions dialects

Each high-level programming language of the 4th generation (Python,
Java, PHP, Ruby, etc.) has its versions of regular expressions with
its syntax and mathematical base. This makes backward compatibility
of various implementations a complex task for researchers, as the syntax
and specific features of a particular implementation are often ignored,
leading to possible memory leaks, program crashes, and code slowness

2

Diversity of regular expressions implementations

Regular expressions can also be classified by the type of software implementation
of the finite automaton described by the expressions.
In general, all such software implementations can be divided into two types -
those implemented on the basis of a deterministic finite automaton (DFA)
and those implemented on the basis of a nondeterministic finite automaton (NFA).

3

Atchitecture of regular expressions translator

Regular expression translator can solve
the backward compatibility problem.
It allows creating a single and independent
intermediate representation that will be
universal for different regular expression
syntaxes

Average regular
expression (1) running
time, msec

PCRE library 3,0

PCRE2 library 4,1

re python library 2,8

regexp package in Golang 5,6

Comparison of regular expression in
different implementations

4

Regular expression intermediate state

ab?c.|d

Regular expressions can be
represented in the form
of an abstract syntax tree.
At the stage of lexical analysis,
an abstract syntax tree
is formed. Each node of such
a tree, in essence, represents
a construction similar
to the Backus-Naur form.

5

Regular expression optimization (tokens)

The optimization stage is divided into two parts – optimization of tokens (lexemes)
of the input expression considering the specifics of the automaton's operation.

For example, most regular expressions have groups of symbol delimiters –
quantifiers. These constructs define the number of repetitions of a specific pattern.
There are also so-called greedy, lazy, and super-greedy quantifiers, differing in the
degree of match strictness.

re library
expression

regex library
expression

Average number
of steps 156 45

Average time, sec
8,4 5,87

Comparison of greedy and lazy quantifiers

6

Regular expression optimization (AST)

Example of regular expression optimization by
population algorithms

Population algorithms can be used to optimize AST.

Population algorithms are among the most widely used algorithms for
solving extreme optimization problems. Three such algorithms are
considered – the differential evolution algorithm (DE), the fish school
search algorithm (FSS), and the particle swarm optimization algorithm
(PSO).

((i|I)nternational.{0, 1}(c|C)onference.{0, 1}on.{0, 1}(i|I)nformation.{0, 1}(t|T)echnologies
{0.8}(bulgaria|Bulgaria).{0.50}(11-12.september(.2024)?)|(info(t|T)ech\s2024)

(International.(c|C)onference.{0, 1}on.{0, 1}(i|I)nformation.{0,
1}(t|T)echnologies{0,8}(bulgaria|Bulgaria) .{0,10}(.2024|11-12.september.2024))|(i|I)nfo(t|T)ech\s2024

AS IS:

TO BE:

7

Regular expression optimization (AST)

Regular expression
(AS IS)

Regular expression
(TO BE)

Average number of
steps

33 35

Average time, msec 3,0 2,8

Comparison of original regexp and optimizated

To achieve these results, the DE algorithm required 35
generations, the particle swarm algorithm required 78, and the
fish swarm algorithm required 24. It's worth noting that this
experiment was preliminary, aimed primarily at demonstrating
the feasibility of working with ASTs of regular expressions
through population algorithms.

8

Conclusion

Presented results show a slight speedup over
the original expressions. However, as
mentioned earlier, regular expressions can be
used everywhere, including for processing
large amounts of data.

Regular expressions are commonly used as
input filters in almost every monitoring
system. In such cases, as the amount of
input data increases, the advantages and
optimizations performed can significantly
reduce the time required to process the input
stream.

9

	Slide 0
	Slide 1: Regular Expressions
	Slide 2
	Slide 3: Diversity of regular expressions implementations
	Slide 4: Atchitecture of regular expressions translator
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

