Usage of semantic technologies for representing non-precise or vague knowledge

Tatyana Ivanova Technical University of Sofia, Bulgaria tiv72@abv.bg

Our main research goals:

- To outline trends in the resent research on ontology development and usage
- To analyze possibilities of semantic modeling of imprecise and fuzzy knowledge
- To propose guidelines for selecting the best logic for fuzzy knowledge representation in selected application area.
- To propose a Methodology for selecting suitable fuzzy logic

Trends in the resent research on ontology development and usage :

Trends in the resent research on fuzzy ontology development and usage :

Approaches for usage of ontologies in knowledge uncertainty or vagueness context

- Techniques for fuzzy knowledge representation
- Types of reasoning mechanisms
- Complexity and decidability of FDLs
- Fuzzy ontology representation languages
- Tools, developed for fuzzy reasoning over ontologies

Fuzzy knowledge representation - FUZZY LOGICS

Operator	Łukasiewicz logic	Gödel logic	Product logic	Zadeh logic
Conjunc- tion α∧β α⊗β	$\max(\alpha + \beta - 1, 0)$	min (α , β)	a ∙ b	min (α , β)
Disjunc- tion α∨β α⊕β	$\min_{(\alpha + \beta, 1)}$	max (α , β)	$a + b - a \cdot b$	max (α,β)
Negation $\neg \alpha \ominus \alpha$	$1 - \alpha$	$1 \text{ if } \alpha = 0$ otherwise 1 $-\alpha$	1 if a = 0 0 otherwise	$1 - \alpha$
Implication $\alpha \rightarrow \beta,$ $\alpha \Rightarrow \beta$	$\min_{(1-\alpha+\beta, 1)}$	1 if $\alpha \leq \beta$ other-wise max (1- α , β)	min(1, b/a)	$\max_{(1-\alpha,\beta)}$

Types of reasoning mechanisms

1. Defuzification and reasoning by usage of crisp ontologies - ontologies are first reduced to crisp ontologies and then reasoning tasks are performed on crisp ontologies;

- 2. Usage of fuzzy tableaux reasoning procedures.
 - technoques aiming to adapt crisp DL reasoning algorithms to the specifics of fuzzy description logic.
 - Tableaux-based algorithms for vague ontologies

Fuzzy ontology representation languages and tools

1. Languages

- OWL, using annotation properties;
- Fuzzy OWL extensions Fuzzy OWL

2. Tools - Fuzzy reasoners

- FIRE,
- FuzzyDL,
- Delorean,
- LiFR

Methodology for selecting suitable fuzzy logic

- Selecting the model for representation of fuzzy sets (what type sets: type 2 or type 1 are more suitable);
- Selecting logical theory, that is the most close to the domain uncertainty (see table 1);
- Selecting inference mechanisms (defuzification, optimizations, or appropriate variant of tableaux reasoning algorithm);
- Finding appropriate software tools (user interface, flexibility, easy usage for software development) for evaluation experiments or for practical usage;
- Theoretical evaluation of effectiveness of corresponding fuzzy reasoning procedures (decidability, complexity);
- 6. Practical experiments on the effectiveness and correctness of results.

CONCLUSION

- Fuzzy ontologies are hot research topic;
- Fuzzy ontologies can handle effectively most of the types of vague knowledge, including linguistic vagueness, attached inherently to the most natural languages;
- Fuzzy reasoners are not standardized yet. They are experimental tools, having some drawbacks, including low efficiency, restricted logical capabilities, and difficult to use interfaces;
- Optimization procedures and using of logical models, having the lower possible logical complexity are very important for guarantying effective reasoning procedures;
- We propose a methodology for modelling imprecise information in many real domains and selecting suitable variant of fuzzy logic to represent knowledge in every practical domain.

Questions?

Tatyana Ivanova Technical University of Sofia, Bulgaria

tiv72@abv.bg